FOLLOWUS
a.Nanotechnology Research Group, Faculty of Science, Urmia University, Urmia 57159-404931, Iran
b.Department of Nanochemistry, Nanotechnology Research Center, Urmia University, Urmia 57159-404931, Iran
m.mahmoudian@urmia.ac.ir
纸质出版日期:2024-11-30,
网络出版日期:2024-09-27,
收稿日期:2024-01-26,
修回日期:2024-06-25,
录用日期:2024-07-22
Scan QR Code
Mahmoudian, M.; Zanbili, F. Fabrication of modified fibrous filters by electrospinning and investigating their application as improved face masks. Chinese J. Polym. Sci. 2024, 42, 1738–1748
Mehdi Mahmoudian, Fatemeh Zanbili. Fabrication of Modified Fibrous Filters by Electrospinning and Investigating Their Application as Improved Face Masks. [J]. Chinese Journal of Polymer Science, 2024,42(11):1738-1748.
Mahmoudian, M.; Zanbili, F. Fabrication of modified fibrous filters by electrospinning and investigating their application as improved face masks. Chinese J. Polym. Sci. 2024, 42, 1738–1748 DOI: 10.1007/s10118-024-3205-6.
Mehdi Mahmoudian, Fatemeh Zanbili. Fabrication of Modified Fibrous Filters by Electrospinning and Investigating Their Application as Improved Face Masks. [J]. Chinese Journal of Polymer Science, 2024,42(11):1738-1748. DOI: 10.1007/s10118-024-3205-6.
The fabricated nanocomposite fibrous filter was used for air purification by face masks. The filter consisted of polystyrene fibers containing modified GO and ZnO nanoparticles. The efficiency of the filter in removing suspended particles and air polluting gases was studied. The results confirmed the antibacterial properties of the filter.
Owing to the significant increase in air pollutants and the spread of infectious diseases
it seems that the use of face masks will become an essential item in human societies. Therefore
there is a need to conduct more research to develop novel types of respirators utilizing up-to-date science such as nanotechnology. In this study
we fabricated a nanocomposite fibrous filter containing modified graphene oxide (GO) and zinc oxide (ZnO) nanoparticles. This layer was used as an active filter for absorbing and removing air pollutants
such as suspended sub-micron particles (below 2.5 microns) and CO
2
NO
2
and SO
2
gases. The synthesized nanostructures and fibrous filters were characterized by different analysis (FTIR
XRD
TGA
and FESEM)
and the performance of the filters was surveyed by tests such as pressure drop
CO
2
NO
2
SO
2
gas rejection
and particulate removal. The results showed that the stabilization of the modified GO and ZnO nanostructures on the fibrous filter improved the effectiveness of this filter as a mask for removing toxic particles and gases
and the filter containing nanoparticles had the best performance.
Air pollutantsFace masksNanocomposite fibrous filterElectrospinning
Umar, Y.; Al-Batty, S.; Rahman, H.; Ashwaq, O.; Sarief, A.; Sadique, Z.; Sreekumar, P. A.; Haque, S. K. M. Polymeric materials as potential inhibitors against SARS-CoV-2.J. Polym. Environ.2022,30, 1244−1263..
Zhao, Y.; Imura, T.; Leman, L. J.; Curtiss, L. K.; Maryanoff, B. E.; Ghadiri, M. R. Mimicry of high-density lipoprotein: functional peptide-lipid nanoparticles based on multivalent peptide constructs.J. Am. Chem. Soc.2013,135, 13414−13424..
Venkataraman, D.; Shabani, E.; Park, J. H. Advancement of nonwoven fabrics in personal protective equipment.Materials2023,16, 3964..
O'Dowd, K.; Nair, K. M.; Forouzandeh, P; Mathew, S.; Grant, J; Moran, R.; Bartlett, J.; Bird, J.; Pillai, S. C. Face masks and respirators in the fight against the COVID-19 pandemic: a review of current materials, advances and future perspectives.Materials2020,13, 3336..
Schwarze, PE.; Ovrevik, J.; Låg, M.; Refsnes, M.; Nafstad, P.; Hetland, R. B.; Dybing, E. Particulate matter properties and health effects: consistency of epidemiological and toxicological studies.Hum. Exp. Toxicol.2006,25, 559−79..
Natsathaporn, P.; Herwig, G.; Altenried, S.; Ren, Q.; Rossi, R. M.; Crespy, D.; Itel, F. Functional fiber membranes with antibacterial properties for face masks.Adv. Fiber. Mater.2023,5, 1519−1533..
Chua, M. H.; Cheng, W.; Goh, SS. Kong, J.; Li, B.; Lim, JYC.; Mao, L.; Wang, S.; Xue, K.; Yang, L.; Ye, E.; Zhang, K.; Cheong, WCD.; Tan, BH.; Li, Z.; Tan, B. H.; Loh, X. J. Face masks in the new COVID-19 normal: materials, testing, and perspectives.Research 2020 , 7286735..
Tcharkhtchi, A.; Abbasnezhad, N.; Zarbini Seydani, M.; Zirak, N.; Farzaneh, S.; Shirinbayan, M. An overview of filtration efficiency through the masks: mechanisms of the aerosols penetration.Bioact. Mater.2021,6, 106−122..
Zhang, Z.; Jia, S.; Wu, W.; Xiao, G.; Sundarrajan, S.; Ramakrishna, S. Electrospun transparent nanofibers as a next generation face filtration media: a review.Biomater. Adv.2023,149, 213390..
Yang, Y.; Yang, Y.; Huang, J.; Li, S.; Meng, Z.; Cai, W.; Lai, Y. Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency.Adv. Fiber. Mater.2023,5, 1505−1518..
Bhardwaj, N.; Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique.Biotechnol. Adv.2010,28, 325−347..
Tucker, N.; Stanger, J.; Staiger, M.; Razzaq, H., Hofman, K. The history of the science and technology of electrospinning from 1600 to 1995.J. Eng. Fibers. Fabr. 2012 ,7..
Agarwal, S.; Wendorff, J. H.; Greiner, A. Use of electrospinning technique for biomedical applications.Polymer2008,49, 5603−5621..
Pullangott, G.; Kannan, U.; S, G.; Kiran, D. V.; Maliyeckal, S. M. A comprehensive review on antimicrobial face masks: an emerging weapon in fighting pandemics.RSC Adv.2021,11, 6544−6576..
BC, B. XIII. On the atomic weight of graphite. Philos.Trans. R. Soc.1859,149, 249−259..
Croft, R. C. Lamellar compounds of graphite.Chem. Soc. Rev.1960,14, 1−45..
Staudenmaier, L.; Verfahren zur Darstellung der Graphitsäure.Ber. Dtsch. Chem. Ges. 1898 ,31, 1481-1487..
Boeck, P. T.; Archer, N. E.; Tanaka, J.; You, W. Reversible addition–fragmentation chain transfer step-growth polymerization with commercially available inexpensive bis-maleimides.Polym. Chem.2022,13, 2589−2594..
Opiyo, G.; Jin, J. Recent progress in switchable RAFT agents: design, synthesis and application.Eur. Polym. J.2021,159, 110713..
Zaaba, N. I.; Foo, K. L.; Hashim, U.; Tan, S.J.; Liu, W. W.; Voon, C. H. Synthesis of graphene oxide using modified hummers method: solvent influence.Procedia. Eng.2017,184, 469−477..
Li, J.; Sun, Q.; Ping, Z.; Gao, Y.; Chen, P.; Huang, F. Electric field-driven air purification filter for high efficiency removal of PM2.5 and SO2: local electric field induction and external electric field enhancement.Atmosphere2022,13, 1260..
Domingue, G.; Ellis, B.; Dasgupta, M.; Costerton, J. W. Testing antimicrobial susceptibilities of adherent bacteria by a method that incorporates guidelines of the National Committee for Clinical Laboratory Standards.J. Clin. Microbiol.1994,32, 2564−8..
Kumar, M. A.; Muthukumaran, S. Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method.Opt. Mater.2014,37, 671−678..
Loryuenyong, V.; Totepvimarn, K.; Eimburanapravat, P.; Boonchompoo, W.; Buasri, A. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods.Adv. Mater. Sci. Eng. 2013 , 923403..
Alam, S.; Sharma, N.; Kumar, L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO).Graphene2017,6, 1−18..
Ledezma, R.; Arizmendi, L.; Rodríguez, J.; castañeda, A.; Ziolo, R. Synthesis and characterization of ionic graphene oxides (GO) for the generation of new multilayered structures and hybrid GO/polymer nanocomposites.Macromol. Symp. 2013 ,325−326, 141-146..
Chae, D.; Kim, B. C.; Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing.Polym. Adv. Technol. 2005 , 16, 846-850..
Kumar, S.; Singh, P.; Kumar, R. Modifications induced by gamma irradiation upon structural, optical and chemical properties of polyamide nylon-6,6 polymer.Radiat. Eff. Defects. Solids.2014,169, 679−685..
Jamshidi Rodbari, R.; Wendelbo, R. W.; Jamshidi, L. Hernández, E.; Nascimento, L. Study of physical and chemical characterization of nanocomposite polystyrene /graphene oxide high acidity can be applied in thin films.J. Chilean. Chem. Soc.2016,61, 3120−3124..
Janaki, A. C.; Sailatha, E.; Gunasekaran, S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim.Acta. A. Mol. Biomol. Spectrosc.2015,144, 17−22..
Hawelek, L.; Kolano-Burian, A.; Szade, J.; Maziarz, W. The atomic scale structure of nanographene platelets studied by X-ray diffraction, high-resolution transmission electron microscopy and molecular dynamics.Diam. Relat. Mater.2013,35, 40−46..
He, R.; Li, J.; Chen, M.; Zhang, S.; Cheng, Y.; Ning, X.; Wang, N. Tailoring moisture electroactive Ag/Zn@cotton coupled with electrospun PVDF/PS nanofibers for antimicrobial face masks.J. Hazard. Mater.2022,428, 128239..
Farivar, F.; Lay Yap, P.; Karunagaran, R. U.; Losic, D. Thermogravimetric analysis (TGA) of graphene materials: effect of particle size of graphene, graphene oxide and graphite on thermal parameters.C 2021 ,7, 41..
Hutera, B.; Kmita, A.; Olejnik, E.; Tokarski, T. Synthesis of ZnO nanoparticles by thermal decomposition of basic zinc carbonate.Arch. Metall. Mater.2013,58, 489−491..
O'Shaughnessy, P. T.; Harris, Z.; Purdy, M.; Altmaier, R. Validation of N95 respirator models for pressure drop and particle capture efficiency.J. Occup. Environ. Hyg.2023,20, 390−400..
Lin, T. H.; Chen, C. C.; Huang, S. H. Filter quality of electret masks in filtering 14.6-594 nm aerosol particles: effects of five decontamination methods.PLoS One2017,12, e0186217..
Rengasamy, S.; Shaffer, R.; Williams, B.; Smit, S. A comparison of facemask and respirator filtration test methods.J. Occup. Environ. Hyg.2016,14, 00−00..
Zhang, G. H.; Zhu, Q. H.; Zhang, L.; Yong, F.; Zhang, Z.; Wang, S.; Wang, Y.; He, L.; Tao, G. High-performance particulate matter including nanoscale particle removal by a self-powered air filter.Nat. Commun.2020,11, 1653..
Robert, B.; Nallathambi, G. Structural design and development of multilayered polymeric nanofibrous membrane for multifaceted air filtration/purification applications.Polym. Plast. Technol. Mater.2023,62, 1435−1451..
Jr, F.; Barradas, T.; Caetano, V.; Lovera, A. Can nanoparticles improve polyaniline electrical conductivity? 2021 .
Li, K.; Chen, Y.; Teo, W. K. Removal of CO2from a breathing gas mixture using a hollow-fibre permeator with permeate purge and absorption.Sep. Purif.1995,9, 93−100..
Subash, A.; Chandramouli, K.; Ramachandran, T.; Rajendran, R.; Muthusamy, M. Preparation, characterization, and functional analysis of zinc oxide nanoparticle-coated cotton fabric for antibacterial efficacy.J. Text. Inst.2011,1, 1−6..
Kim, CG.; Lee, S.; Kim, M.; Cao, VA.; Kim, SY.; Nah, J. Synergistic enhancement of filtering efficiency and antibacterial performance of a nanofiber air filter decorated with electropolarized lithium-doped ZnO nanorods.ACS. Appl. Mater. Interfaces2023,15, 20977−20986..
Zakrzewska, A.; Haghighat Bayan, M. A.; Nakielski, P.; Petronella, F.; Desio, L.; Pierini, F. Nanotechnology transition roadmap toward multifunctional stimuli-responsive face masks.ACS. Appl. Mater. Interfaces2022,14, 46123−46144..
Xu, J.; Xiao, X.; Zhang, W.; Xu, R.; Kim, SC.; Cui, Y.; Howard, TT.; Wu, E.; Cui, Y. Air-filtering masks for respiratory protection from PM2.5 and pandemic pathogens.One Earth2020,3, 574−589..
De Maio, F.; Palmieri, V.; Babini, G.; Augello, A.; Palucci, I.; Perini, G.; Salustri, A.; Spilman, P.; De Spirito, M.; Sanguinetti, M.; Delogu, G.; Rizzi, L. G.; Cesareo, G.; Soon-Shiong P.; Sali, M.; Papi, M. Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2.iScience2021,24, 102788..
Ray, S. S.; Soni, R.; Huyen, DT.; Ravi, S.; Myung, S.; Lee, Ch.; Kwon, Y. N. Chemical engineering of electrospun nanofibrous-based three-layered nonwoven polymeric protective mask for enhanced performance.J. Appl. Polym. Sci.2023,140, e53584..
Abbas, WA.; Shaheen, BS.; Ghanem, L.; Badawy, IM.; Abodouh, MM.; Abdou, SM.; Zada, S.; Allam, N. K. Cost-effective face mask filter based on hybrid composite nanofibrous layers with high filtration efficiency.Langmuir2021,37, 7492−7502..
Tebyetekerwa, M.; Xu, Z.; Yang, S.; Ramakrishna, S. Electrospun nanofibers-based face masks.Adv. Fiber. Mater.2020,2, 161−166..
Qian, Y.; Willeke, K.; Grinshpun, S.; Donnelly, J.; Coffey, C. C. Performance of N95 respirators: filtration efficiency for airborne microbial and inert particles.Am. Ind. Hyg. Assoc. J.1998,59, 128−132..
Chen, K. N.; Sari, F.; Ting, J. M. Multifunctional TiO2/polyacrylonitrile nanofibers for high efficiency PM2.5 capture, UV filter, and anti-bacteria activity.Appl. Surf. Sci. 2019 ,493..
Aamer, H.; Kim, SB.; Oh, JM.; Park, H.; Jo, YM. ZnO-impregnated polyacrylonitrile nanofiber filters against various phases of air pollutants.Nanomaterials 2021 ,11..
Wong, D.; Hartery, S.; Keltie, Chang, R.; Kim, J.; Park, S. Electrospun polystyrene and acid-treated cellulose nanocrystals with intense pulsed light treatment for N95-equivalent filters.ACS Appl. Polym. Mater.2021,3, 4949−4958..
0
浏览量
8
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构