State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
xiaokongliu@jlu.edu.cn
纸质出版日期:2024-10-01,
网络出版日期:2024-09-02,
收稿日期:2024-05-01,
修回日期:2024-06-14,
录用日期:2024-06-21
Scan QR Code
Wang, Z. Y.; Liu, X. K. Polymer-to-monomers chemically recyclable poly(imide-imine) plastics with extreme-condition resistance and flame retardancy. Chinese J. Polym. Sci. 2024, 42, 1525–1535
Zhen-Yu Wang, Xiao-Kong Liu. Polymer-to-Monomers Chemically Recyclable Poly(imide-imine) Plastics with Extreme-Condition Resistance and Flame Retardancy[J]. Chinese Journal of Polymer Science, 2024,42(10):1525-1535.
Wang, Z. Y.; Liu, X. K. Polymer-to-monomers chemically recyclable poly(imide-imine) plastics with extreme-condition resistance and flame retardancy. Chinese J. Polym. Sci. 2024, 42, 1525–1535 DOI: 10.1007/s10118-024-3199-0.
Zhen-Yu Wang, Xiao-Kong Liu. Polymer-to-Monomers Chemically Recyclable Poly(imide-imine) Plastics with Extreme-Condition Resistance and Flame Retardancy[J]. Chinese Journal of Polymer Science, 2024,42(10):1525-1535. DOI: 10.1007/s10118-024-3199-0.
A dynamic covalent poly(imide-imine) polymer with excellent flame retardancy is reported
exhibiting comparable properties to the commercial polyimides
including exceptional mechanical properties
high thermal stability
and outstanding chemical resistance. The plastic can be depolymerized and converted back into the initial pure monomers that can be used to regenerate new-generation plastics.
Polyimides are a family of high-tech plastics that have irreplaceable applications in the fields of aerospace
defense
and opto-electronics
but polyimides are difficult to be reprocessed and recycled at the end of their service life
resulting in a significant waste of resources. Hence
it is of great significance to develop recyclable polyimides with comparable properties to the commercial products. Herein
we report a novel polymer-to-monomers chemically recyclable poly(imide-imine) (PtM-CR-PII) plastic
synthesized by cross-linking the amine-terminated aromatic bisimide monomer and the hexa-vanillin terminated cyclophosphazene monomer via dynamic imine bonds. The PtM-CR-PII plastic exhibits comparable mechanical and thermal properties as well as chemical stability to the commercial polyimides. The PtM-CR-PII plastic possesses a high Young’s modulus of ≈3.2 GPa and a tensile strength as high as ≈108 MPa
which also exhibits high thermal stability with a glass transition temperature of ≈220 °C. Moreover
the PtM-CR-PII plastic exhibits outstanding waterproofness
acid/alkali-resistance
and solvent-resistance
its appearance and mechanical properties can be well maintained after long-term soaking in water
highly concentrated acid and base
and various organic solvents. Furthermore
the cyclophosphazene moieties endow the PtM-CR-PII plastic with excellent flame retardancy. The PtM-CR-PII plastic exhibits the highest UL-94 flame-retarding rating of V-0 and a limiting oxygen index (LOI) value of 45.5%. Importantly
the PtM-CR-PII plastic can be depolymerized in an organic solvents-acid mixture medium at room temperature
allowing easy separation and recovery of both monomers in high purity. The recovered pure monomers can be used to regenerate new PtM-CR-PII plastics
enabling sustainable polymer-monomers-polymer circulation.
Chemical recyclabilityPolyimidesPolyiminesDynamic imine bondsMechanical propertiesChemical stability
Gibb, B. C. Plastics are forever.Nat. Chem.2019,11, 394−395..
Liu, Z.; Fang, Z.; Zheng, N.; Yang, K.; Sun, Z.; Li, S.; Li, W.; Wu, J.; Xie, T. Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins.Nat. Chem.2023,15, 1773−1779..
Wang, Y.; van Putten, R. J.; Tietema, A.; Parsons, J. R.; Gruter, G.-J. M. Polyester biodegradability: Importance and potential for optimisation.Green Chem.2024,26, 3698−3716..
Bachmann, M.; Zibunas, C.; Hartmann, J.; Tulus, V.; Suh, S.; Guillén-Gosálbez, G.; Bardow, A. Towards circular plastics within planetary boundaries.Nat. Sustain.2023,6, 599−610..
Borrelle, S. B.; Ringma, J.; Law, K. L.; Monnahan, C. C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G. H.; Hilleary, M. A.; Eriksen, M.; Possingham, H. P.; De Frond, H.; Gerber, L. R.; Polidoro, B.; Tahir, A.; Bernard, M.; Mallos, N.; Barnes, M.; Rochman, C. M. Predicted growth in plastic waste exceeds efforts tomitigate plastic pollution.Science2020,369, 1515−1518..
MacLeo, M.; Arp, H. P. H.; Tekman, M. B.; Jahnke, A. The global threat from plastic pollution.Science2021,373, 61−65..
Martín, A. J.; Mondelli, C.; Jaydev, S. D.; Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise.Chem2021,7, 1487−1533..
Schneiderman, D. K.; Hillmyer, M. A. 50thAnniversary perspective: There is a great future in sustainable polymers.Macromolecules2017,50, 3733−3749..
Wang, B.; Zhang, Q.; Wang, Z.; Shi, C.; Gong, X.; Tian, H.; Qu, D. Acid-catalyzed disulfide-mediated reversible polymerization for recyclable dynamic covalent materials.Angew. Chem. Int. Ed.2023,62, e202215329..
Zhang, Q.; Deng, Y.; Shi, C.; Feringa, B.; Tian, H.; Qu, D. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides).Matter2021,4, 1352−1364..
Cao, Q.; Tu, Y.; Fan, H.; Shan, S.; Cai, Z.; Zhu, J. Torsional strain enabled ring-opening polymerization towards axially chiral semiaromatic polyesters with chemical recyclability.Angew. Chem. Int. Ed.2024,63, e202400196..
Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self-healing.Chem. Rev.2021,121, 1716−1745..
Lv, W.; Li, M.; Tao, Y. Bridged bicyclic lactam enables chemically recyclable nylon.Angew. Chem. Int. Ed.2024,63, e202402541..
Wang, Y.; Zhu, Y.; Lv, W.; Wang, X.; Tao, Y. Tough while recyclable plastics enabled by monothiodilactone monomers.J. Am. Chem. Soc.2023,145, 1877−1885..
Li, J.; Liu, F.; Liu, Y.; Shen, Y.; Li, Z. Functionalizable and chemically recyclable thermoplastics from chemoselective ring-opening polymerization of bio-renewable bifunctionalα-methylene-δ-valerolactone.Angew. Chem. Int. Ed.2022,61, e202207105..
Li, Z.; Zhao, D.; Shen, Y.; Li, Z. Ring-opening polymerization of enantiopure bicyclic ether-ester monomers toward closed-loop recyclable and crystalline stereoregular polyestersviachemical upcycling of bioplastic.Angew. Chem. Int. Ed.2023,62, e202302101..
Li, Z.; Shen, Y.; Li, Z. Ring-opening polymerization of lactones to prepare closed-loop recyclable polyesters.Macromolecules2024,57, 1919−1940..
Rosetto, G.; Vidal, F.; McGuire, T. M.; Kerr, R. W. F.; Williams, C. K. High molar mass polycarbonates as closed-loop recyclable thermoplastics.J. Am. Chem. Soc.2024,146, 8381−8393..
Zhao, J.; Yue,T.; Ren, B.; Lu, X.; Ren, W. Closed-loop recycling of sulfur-rich polymers with tunable properties spanning thermoplastics, elastomers, and vitrimers.Nat. Commun.2024,15, 3002..
Liu, Y.; Yu, Z.; Wang, B.; Li, P.; Zhu, J.; Ma, S. Closed-loop chemical recycling of thermosetting polymers and their applications: a review.Green Chem.2022,24, 5691−5708..
Mangold, H.; von Vacano, B. The frontier of plastics recycling: Rethinking waste as a resource for high-value applications.Macromol. Chem. Phys.2022,223, 2100488..
Arifuzzaman, M.; Sumpter, B. G.; Demchuk, Z.; Do, C.; Arnould, M. A.; Rahman, M. A.; Cao, P. F.; Popovs, I.; Davis, R. J.; Dai, S.; Saito, T. Selective deconstruction of mixed plastics by a tailored organocatalyst.Mater. Horiz.2023,10, 3360−3368..
Wang, B.; Wang, Y.; Du, S.; Zhu, J.; Ma, S. Upcycling of thermosetting polymers into high-value materials.Mater. Horiz.2023,10, 41−51..
Li, J.; Li, W.; Zhang, W.; Zhu, S.; Luo, C.; Liu, W.; Zhang, L. Enhancing molecular chain entanglement andπ-πstacking toward the improvement of shape memory performance of polyimide.Chinese J. Polym. Sci.2023,41, 1261−1268..
Wan, B.; Dong, X.; Yang, X.; Wang, J.; Zheng, M.; Dang, Z.; Chen, G.; Zha, J. Rising of dynamic polyimide materials: a versatile dielectric for electrical and electronic applications.Adv. Mater.2023,35, 2301185..
Li, Y.; Sun, G.; Zhou, Y.; Liu, G.; Wang, J.; Han, S. Progress in low dielectric polyimide film-a review.Prog. Org. Coat.2022,172, 107103..
Liu, X.; Zheng, M.; Chen, G.; Dang, Z.; Zha, J. High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties.Energ. Environ. Sci.2022,15, 56−81..
Ruan, K.; Guo, Y.; Gu, J. Liquid crystalline polyimide films with high intrinsic thermal conductivitiesand robust toughness.Macromolecules2021,54, 4934−4944..
Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in polyimide-based materials for space applications.Adv. Mater.2019,31, 1807738..
Arrington, C. B.; Hegde, M.; Meenakshisundaram, V.; Dennis, J. M.; Williams, C. B.; Long, T. E. Supramolecular salts for additive manufacturing of polyimides.ACS Appl. Mater. Interfaces2021,13, 48061−48070..
Wan, B.; Yang, X.; Dong, X.; Zheng, M.; Zhao, Q.; Zhang, H.; Chen, G.; Zha, J. Dynamic sustainable polyimide film combining hardness with softnessviaa “mimosa-like” bionic strategy.Adv. Mater.2022,35, 2207451..
Lei, X.; Jin, Y.; Sun, H.; Zhang, W. Rehealable imide-imine hybrid polymers with full recyclability.J. Mater. Chem. A2017,5, 21140−21145..
Liaw, D. J.; Wang, K.; Huang, Y.; Lee, K. R.; Lai, J.; Ha, C. Advanced polyimide materials: Syntheses, physical properties and applications.Prog. Polym. Sci.2012,37, 907−974..
Guan, T.; Wang, X.; Zhao, X.; Lu, X.; Wang, X.; Wang, Y.; Sun, J. Reversibly cross-linking polyimide and cyclophosphazene toward closed-loop recyclable plastics with high mechanical strength, excellent flame retardancy, and chemical resistance.CCS Chem.2024,6, 976−987..
Wan, B.; Xiao, M.; Dong, X.; Yang, X.; Zheng, M.; Dang, Z.; Chen, G.; Zha, J. Dynamic covalent adaptable polyimide hybrid dielectric films with superior recyclability.Adv. Mater.2023, DOI: 10.1002/adma.202304175..
Zhang, X.; Zhang, S.; Liu, W.; Abbas, Y.; Wu, Z.; Eichen, Y.; Zhao, J. Thermally switchable polymers: From thermo-reversibly self-healing hybrid polymers to irreversibly crosslinked flame-retardant networks.Chem. Eng. J.2021,411, 128467..
Liu, T.; Peng, J.; Liu, J.; Hao, X.; Guo, C.; Ou, R.; Liu, Z.; Wang, Q. Fully recyclable, flame-retardant and high-performance carbon fiber composites based on vanillin-terminated cyclophosphazene polyimine thermosets.Compos. Part B-Eng.2021,224, 109188..
Lei, X.; Xiong, G.; Xiao, Y.; Huang, T.; Xin, X.; Xue, S.; Zhang, Q. High temperature shape memory poly(amide-imide)s with strong mechanical robustness.Polym. Chem.2022,13, 5082−5093..
Zhao, S.; Abu-Omar, M. M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds.Macromolecules2018,51, 9816−9824..
Yang, Z.; Zhang, Y.; Li, S.; Zhang, X.; Wang, T.; Wang, Q. Fully closed-loop recyclable thermosetting shape memory polyimide.ACS Sustainable Chem. Eng.2020,8, 18869−18878..
Halder, A.; Karak, S.; Addicoat, M.; Bera, S.; Chakraborty, A.; Kunjattu, S. H.; Pachfule, P.; Heine, T.; Banerjee, R. Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding.Angew. Chem. Int. Ed.2018,57, 5797−5802..
Yuan, Y.; Chen, H.; Jia, L.; Lu, X.; Yan, S.; Zhao, J.; Liu, S. Aromatic polyimine covalent adaptable networks with superior water and heat resistances.Eur. Polym. J.2023,187, 111912..
Lei, X.; Liu, Y.; Xiao, Y.; Zhang, Y.; Huang, T.; Zhang, Q. High-performance poly(imide-imine) vitrimers derived from semiaromatic bisimide diamines.Macromolecules2023,56, 9866−9880..
Wang, Y.; Li, M.; Chen, J.; Tao, Y.; Wang, X. O-to-S substitution enables dovetailing conflicting cyclizability, polymerizability, and recyclability: dithiolactone vs. dilactone.Angew. Chem. Int. Ed.2021,60, 22547−22553..
Shi, C.; Li, Z.; Caporaso, L.; Cavallo, L.; Falivene, L.; Chen, E. Y.-X. Hybrid monomer design for unifying conflicting polymerizability, recyclability, and performance properties.Chem2021,7, 670−685..
Lu, X.; Xie, P.; Li, X.; Li, T.; Sun, J. Acid-cleavable aromatic polymers for the fabrication of closed-loop recyclable plastics with high mechanical strength and excellent chemical resistance.Angew. Chem. Int. Ed.2024,63, e202316453..
Li, X.; Clarke, R. W.; Jiang, J.; Xu, T.; Chen, E. Y.-X. A circular polyester platform based on simple gem-disubstituted valerolactones.Nat. Chem.2022,15, 278−285..
Li, X. L.; Clarke, R. W.; An, H. Y.; Gowda, R. R.; Jiang, J.; Xu, T.; Chen, E. Y.-X. Dual recycling of depolymerization catalyst and biodegradable polyester that markedly outperforms polyolefins.Angew. Chem. Int. Ed.2023,62, e202303791..
Häußler, M.; Eck, M.; Rothauer, D.; Mecking, S. Closed-loop recycling of polyethylene-like materials.Nature2021,590, 423−427..
Guo, Y.; Shi, C.; Du, T.; Cheng, X.; Du, F.; Li, Z. Closed-loop recyclable aliphatic poly(ester-amide)s with tunable mechanical properties.Macromolecules2022,55, 4000−4010..
Fan, H.; Yang, X.; Chen, J.; Tu, Y.; Cai, Z.; Zhu, J. Advancing the development of recyclable aromatic polyesters by functionalization and stereocomplexation.Angew. Chem. Int. Ed.2022,61, e202117639..
Zhu, J.; Watson, E. M.; Tang, J.; Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability.Science2018,360, 398−403..
Zhang, Z.; Lei, D.; Zhang, C.; Wang, Z.; Jin, Y.; Zhang, W.; Liu, X.; Sun, J. Strong and tough supramolecular covalent adaptable networks with room-temperature closed-loop recyclability.Adv. Mater. 2022, 35,2208619..
Yuan, Y.; Sun, Y.; Yan, S.; Zhao, J.; Liu, S.; Zhang, M.; Zheng, X.; Jia, L. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites.Nat. Commun. 2017, 8, 14657..
Saito, K.; Eisenreich, F.; Türel, T.; Tomović, Ž. Closed-loop recycling of poly(imine-carbonate) derived from plastic waste and bio-based resources.Angew. Chem. Int. Ed.2022,61, e202211806..
Qin, B.; Liu, S.; Huang, Z.; Zeng, L.; Xu, J.; Zhang, X. Closed-loop chemical recycling of cross-linked polymeric materials based on reversible amidation chemistry.Nat. Commun.2022,13, 7595..
Ma, Y.; Jiang, X.; Shi, Z.; Berrocal, J. A.; Weder, C. Closed-loop recycling of vinylogous urethane vitrimers.Angew. Chem. Int. Ed.2023,62, e202306188..
Lu, X.; Xie, P.; Xiang, X.; Sun, J. Mechanically robust supramolecular plastics with energy-savingand highly efficient closed-loop recyclability.Macromolecules2022,55, 2557−2565..
Lu, X.; Bao, C.; Xie, P.; Guo, Z.; Sun, J. Solution-processable and thermostable super-strong poly(aryl ether ketone) supramolecular thermosets cross-linked with dynamic boroxines.Adv. Funct. Mater.2021,31, 2103061..
Lei, Z.; Chen, H.; Luo, C.; Rong, Y.; Hu, Y.; Jin, Y.; Long, R.; Yu, K.; Zhang, W. Recyclable and malleable thermosets enabled by activating dormant dynamic linkages.Nat. Chem.2022,14, 1399−1404..
Hu, Z.; Hu, F.; Deng, L.; Yang, Y.; Xie, Q.; Gao, Z.; Pan, C.; Jin, Y.; Tang, J.; Yu, G.; Zhang, W. Reprocessible triketoenamine-based vitrimers with closed-loop recyclability.Angew. Chem. Int. Ed.2023,62, e202306039..
Christensen, P. R.; Scheuermann, A. M.; Loeffler, K. E.; Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds.Nat. Chem.2019,11, 442−448..
Chen, H.; Hu, Y.; Luo, C.; Lei, Z.; Huang, S.; Wu, J.; Jin, Y.; Yu, K.; Zhang, W. Spiroborate-linked ionic covalent adaptable networks with rapid reprocessability and closed-loop recyclability.J. Am. Chem. Soc.2023,145, 9112−9117..
Zhang, X.; Eichen, Y.; Miao, Z.; Zhang, S.; Cai, Q.; Liu, W.; Zhao, J.; Wu, Z. Novel phosphazene-based flame retardant polyimine vitrimers with monomer-recovery and high performances.Chem. Eng. J.2022,440, 135806..
Miao, Z.; Yan, D.; Zhang, T.; Yang, F.; Zhang, S.; Liu, W.; Wu, Z. High-efficiency flame retardants of a P–N-rich polyphosphazene elastomer nanocoating on cotton fabric.ACS Appl. Mater.2021,13, 32094−32105..
Duan, H.; Chen, Y.; Ji, S.; Hu, R.; Ma, H. A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties.Chem. Eng. J.2019,375, 121916..
Liu, H.; Wang, X.; Wu, D. Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: synthesis, curing behaviors, and flame retardancy.Polym. Degrad. Stabil.2014,103, 96−112..
Teng, N.; Dai, J.; Wang, S.; Hu, J.; Liu, X. Hyperbranched flame retardant for epoxy resin modification: simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature.Chem. Eng. J.2022,428, 131226..
Nishimura, Y.; Chung, J.; Muradyan, H.; Guan, Z. Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design.J. Am. Chem. Soc.2017,139, 14881−14884..
Delahaye, M.; Winne, J. M.; Du Prez, F. E. Internal catalysis in covalent adaptable networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry.J. Am. Chem. Soc.2019,141, 15277−15287..
Li, Q.; Ma, S.; Li, P.; Wang, B.; Yu, Z.; Feng, H.; Liu, Y.; Zhu, J. Fast reprocessing of acetal covalent adaptable networks with high performance enabled by neighboring group participation.Macromolecules2021,54, 8423−8434..
He, C.; Shi, S.; Wang, D.; Helms, B. A.; Russell, T. P. Poly(oxime-ester) vitrimers with catalyst-free bond exchange.J. Am. Chem. Soc.2019,141, 13753−13757..
Yu, S.; Wu, S.; Zhang, C.; Tang, Z.; Luo, Y.; Guo, B.; Zhang, L. Catalyst-free metathesis of cyclic acetals and spirocyclic acetal covalent adaptable networks.ACS Macro Lett.2020,9, 1143−1148..
Yu, P.; Wang, H.; Li, T.; Wang, G.; Jia, Z.; Dong, X.; Xu, Y.; Ma, Q.; Zhang, D.; Ding, H.; Yu, B. Mechanically robust, recyclable, and self-healing polyimine networks.Adv. Sci.2023,10, 202300958..
0
浏览量
68
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构