a.State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
b.School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
zhwangpoly@scu.edu.cn (Z.H.W.)
xiahs@scu.edu.cn (H.S.X.)
纸质出版日期:2024-10-01,
网络出版日期:2024-08-27,
收稿日期:2024-05-06,
修回日期:2024-06-16,
录用日期:2024-06-21
Scan QR Code
Xie, M.; Wang, X. R.; Wang, Z. H.; Xia, H. S. Creep-resistant covalent adaptable networks with excellent self-healing and reprocessing performance via phase-locked dynamic covalent benzopyrazole-urea bonds. Chinese J. Polym. Sci. 2024, 42, 1545–1556
Miao Xie, Xiao-Rong Wang, Zhan-Hua Wang, et al. Creep-Resistant Covalent Adaptable Networks with Excellent Self-Healing and Reprocessing Performance
Xie, M.; Wang, X. R.; Wang, Z. H.; Xia, H. S. Creep-resistant covalent adaptable networks with excellent self-healing and reprocessing performance via phase-locked dynamic covalent benzopyrazole-urea bonds. Chinese J. Polym. Sci. 2024, 42, 1545–1556 DOI: 10.1007/s10118-024-3195-4.
Miao Xie, Xiao-Rong Wang, Zhan-Hua Wang, et al. Creep-Resistant Covalent Adaptable Networks with Excellent Self-Healing and Reprocessing Performance
Excellent self-healing and reprocessing performance can be obtained owing to the dynamic benzopyrazole-urea bonds. Phase separation from the aggregation of the benzopyrazole-urea bond induced by the hydrogen bonding and π-π stacking is capable of blocking the dissociation of the benzopyrazole urea bond at low temperature
thus endowing the CANs with anti-creep performance. This hard phase locking strategy provides an efficient approach to design CANs materials with both excellent reprocessing and creep-resistance performance.
Covalent adaptive networks (CANs) are capable of undergoing segment rearrangement after being heated
which endows the materials with excellent self-healing and reprocessing performance
providing an efficient solution to the environment pollution caused by the plastic wastes. The main challenge remains in developing CANs with both excellent reprocessing performance and creep-resistance property. In this study
a series of CANs containing dynamic covalent benzopyrazole-urea bonds were developed based on the addition reaction between benzopyrazole and isocyanate groups. DFT calculation confirmed that relatively low dissociation energy is obtained through undergoing a five-member ring transition state
confirming excellent dynamic property of the benzopyrazole-urea bonds. As verified by the FTIR results
this nice dynamic property can be well maintained after incorporating the benzopyrazole-urea bonds into polymer networks. Excellent self-healing and reprocessing performance is observed by the 3-ABP/PDMS elastomers owing to the dynamic benzopyrazole-urea bonds. Phase separation induced by the aggregation of the hard segments locked the benzopyrazole-urea bonds
which also makes the elastomers display excellent creep-resistance performance. This hard phase locking strategy provides an efficient approach to design CANs materials with both excellent reprocessing and creep-resistance performance.
Covalent adaptive networksSelf-healing polymerDynamic covalent bond
Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N. Covalent adaptable networks (CANs): a unique paradigm in cross-linked polymers.Macromolecules2010,43, 2643−2653..
Kloxin, C. J.; Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems.Chem. Soc. Rev2013,42, 7161−7173..
Zhang, M.-Q. Self-healing polymeric materials: on a winding road to success.Chinese J. Polym. Sci.2022,40, 1315−1316..
Xu, J.; Zhu, L.; Feng, X. Q.; Sui, C.; Zhao, W. P.; Yan, S. K. Effect of phase separation size on the properties of self-healing elastomer.Chinese J. Polym. Sci.2024,42, 798−804..
Xue, J. T.; Bai, Y.; Peng, L.; Huang, X. B.; Sun, Z. Y. Exploring the interplay between local chain structure and stress distribution in polymer networks.Chinese J. Polym. Sci.2024,42, 874−885..
Dai, W. T.; Xie, Z. H.; Ke, Y. B.; You, Y.; Rong, M. Z.; Zhang, M. Q. Topological confinement in reversibly interlocked polymer networks.Chinese J. Polym. Sci.2024,42, 133−140..
Xu, Q. J.; Yuan, Z. Y.; Wang, C. C.; Liang, H.; Shi, Y.; Wu, H. T.; Xu, H.; Zheng, J.; Wu, J. R. Tough semi-interpenetrating polyvinylpyrrolidone/polyacrylamide hydrogels enabled by bioinspired hydrogen-bonding induced phase separation.Chinese J. Polym. Sci.2024,42, 591−603..
Deng, Y.; Yuan, Y.; Chen, Y. Covalently cross-linked and mechanochemiluminescent polyolefins capable of self-healing and self-reporting.CCS Chem.2020,2, 1316−1324..
Gao, S.; Jiang, S.; Qi, J.; Wu, T.; Wang, W.; Liu, Z.; Zhang, B.; Huang, J.; Yan, Y. Neither fluorocarbons nor silicones: hydrocarbon-based water-borne healable supramolecular elastomer with unprecedent dual resistance to water and organic solvents.CCS Chem.2022,4, 3724−3734..
Li, X.; Yang, F.; Li, Y.; Liu, C.; Zhao, P.; Cao, Y.; Xu, H.; Chen, Y. Diselenide as a dual functional mechanophore capable of stress self-reporting and self-strengthening in polyurethane elastomers.CCS Chem.2022,4, 925−933..
Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing.Chem. Rev.2021,121, 1716−1745..
Feng, H.; Zheng, N.; Peng, W.; Ni, C.; Song, H.; Zhao, Q.; Xie, T. Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening.Nat. Commun.2022,13, 397..
Zhang, H.; Wang, D.; Wu, N.; Li, C.; Zhu, C.; Zhao, N.; Xu, J. Recyclable, self-healing, thermadapt triple-shape memory polymers based on dual dynamic bonds.ACS Appl. Mater. Interfaces2020,12, 9833−9841..
Xu, Z.; Chen, L.; Lu, L.; Du, R.; Ma, W.; Cai, Y.; An, X.; Wu, H.; Luo, Q.; Xu, Q.; Zhang, Q.; Jia, X. A highly-adhesive and self-healing elastomer for bio-interfacial electrode.Adv. Funct. Mater.2021,31, 2006432..
Zhang, Q.; Zhu, X.; Li, C.-H.; Cai, Y.; Jia, X.; Bao, Z. Disassociation and reformation under strain in polymer with dynamic metal-ligand coordination cross-linking.Macromolecules2019,52, 660−668..
Peng, W. L.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Reversibly interlocked macromolecule networks with enhanced mechanical properties and wide pH range of underwater self-healability.ACS Appl. Mater. Interfaces2020,12, 27614−27624..
Xu, H.; Zhang, Y.; Wang, H.; Wu, J. R. Unraveling the heterogeneity of epoxy-amine networks by introducing dynamic covalent bonds.Chinese J. Polym. Sci.2023,41, 926−932..
Wang, Y.; Yang, L.; Zhang, L.; Huang, H.; Qian, B.; Gu, S.; You, Z. Solvent-free synthesis of self-healable and recyclable crosslinked polyurethane based on dynamic oxime-urethane bonds.Chinese J. Polym. Sci.2023,41, 1725−1732..
de Heer Kloots, M. H. P.; Schoustra, S. K.; Dijksman, J. A.; Smulders, M. M. J. Phase separation in supramolecular and covalent adaptable networks.Soft Matter2023,19, 2857−2877..
Lai, Y.; Kuang, X.; Yang, W. H.; Wang, Y.; Zhu, P.; Li, J. P.; Dong, X.; Wang, D. J. Dynamic bonds mediateπ-πinteractionviaphase locking effect for enhanced heat resistant thermoplastic polyurethane.Chinese J. Polym. Sci.2021,39, 154−163..
Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design.Adv. Mater.2018,30, 1802556..
Gaikwad, S.; Urban, M. W. Ring-and-lock interactions in self-healable styrenic copolymers.J. Am. Chem. Soc.2023,145, 9693−9699..
Danielsen, S. P. O. Chemical compatibilization, macro-, and microphase separation of heteroassociative polymers.Macromolecules2023,56, 6527−6542..
Wang, Y.; Lou, C. W.; Wang, Y.; Zhang, X.; Ren, H. T.; Lin, J. H.; Li, T. T. Constructing self-healing high-strength elastomer with condensed state microphase separation by solubilization and copolymerization.Polymer2022,257, 125148..
Mal, S.; Malik, U.; Mahapatra, M.; Mishra, A.; Pal, D.; Paidesetty, S. K. A review on synthetic strategy, molecular pharmacology of indazole derivatives, and their future perspective.Drug Develop. Res.2022,83, 1469−1504..
Van Lijsebetten, F.; Debsharma, T.; Winne, J. M.; Du Prez, F. E. A highly dynamic covalent polymer network without creep: mission impossible.Angew. Chem. Int. Ed.2022,61, e202210405..
Wang, Z.; Yang, M.; Wang, X.; Fei, G.; Zheng, Z.; Xia, H. NIR driven fast macro-damage repair and shear-free reprocessing of thermoset elastomersviadynamic covalent urea bonds.J. Mater. Chem. A2020,8, 25047−25052..
Wang, Z.; Gangarapu, S.; Escorihuela, J.; Fei, G.; Zuilhof, H.; Xia, H. Dynamic covalent urea bonds and their potential for development of self-healing polymer materials.J. Mater. Chem. A2019,7, 15933−15943..
Liu, J.; Urban, M. W. Dynamic interfacesin self-healable polymers.Langmuir2024,40, 7268−7285..
Hornat, C. C.; Urban, M. W. Entropy and interfacial energy driven self-healable polymers.Nat. Commun.2020,11, 1028..
Zhang, Q.; Wang, S.; Rao, B.; Chen, X.; Ma, L.; Cui, C.; Zhong, Q.; Li, Z.; Cheng, Y.; Zhang, Y. Hindered urea bonds for dynamic polymers: an overview.React. Funct. Polym.2021,159, 104807..
Ying, H.; Zhang, Y.; Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers.Nat. Commun.2014,5, 3218..
Shi, J.; Zheng, T.; Guo, J.; Guo, B.; Xu, J. Covalent adaptable network with high topology freezing temperatures and tunable mechanical properties: polyureas containing dynamic aniline-urea bonds.ACS Appl. Polym. Mater.2024,6, 371−378..
Sheppard, D. T.; Jin, K.; Hamachi, L. S.; Dean, W.; Fortman, D. J.; Ellison, C. J.; Dichtel, W. R. Reprocessing postconsumer polyurethane foam using carbamate exchange catalysis and twin-screw extrusion.ACS Cent. Sci.2020,6, 921−927..
Quienne, B.; Cuminet, F.; Pinaud, J.; Semsarilar, M.; Cot, D.; Ladmiral, V.; Caillol, S. Upcycling biobased polyurethane foams into thermosets: toward the closing of the loop.ACS Sustainable Chem. Eng.2022,10, 7041−7049..
Fortman, D. J.; Brutman, J. P.; Hillmyer, M. A.; Dichtel, W. R. Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes.J. Appl. Polym.2017,134, 44984..
Li, Y.; Wang, Y.; Wang, S.; Ye, Z.; Bian, C.; Xing, X.; Hong, T.; Jing, X. Highly tunable and robust dynamic polymer networks via conjugated–hindered urea bonds.Macromolecules2022,55, 9091−9102..
Liu, W.; Yang, S.; Huang, L.; Xu, J.; Zhao, N. Dynamic covalent polymers enabled by reversible isocyanate chemistry.Chem. Commun.2022,58, 12399−12417..
Lai, J.; Xing, X.; Feng, H.; Wang, Z.; Xia, H. Covalent adaptive networks with repairable, reprocessable, reconfigurable, recyclable, and re-adhesive (5R) performanceviadynamic isocyanate chemistry.Polym. Chem.2023,14, 4381−4406..
Liu, W.-X.; Yang, Z.; Qiao, Z.; Zhang, L.; Zhao, N.; Luo, S.; Xu, J. Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds.Nat. Commun.2019,10, 4753..
Ren, S.; Zhou, W.; Song, K.; Gao, X.; Zhang, X.; Fang, H.; Li, X.; Ding, Y. Robust, self-healing, anti-corrosive waterborne polyurethane urea composite coatings enabled by dynamic hindered urea bonds.Prog. Org. Coat.2023,180, 107571..
Xie, M.; Wang, X.; Lai, J.; Lu, X.; Wang, Z.; Xia, H. Room-temperature dynamic and creep-resistant covalent adaptive networks via phase-locked benzimidazole urea bonds: toward recyclable elastomers for wearable electronic devices.ACS Sustainable Chem. Eng.2024,12, 512−525..
Sun, S.; Fei, G.; Wang, X.; Xie, M.; Guo, Q.; Fu, D.; Wang, Z.; Wang, H.; Luo, G.; Xia, H. Covalent adaptable networks of polydimethylsiloxane elastomer for selective laser sintering 3D printing.Chem. Eng. J.2021,412, 128675..
Gao, J. H.; Wan, B.; Zheng, M. S.; Luo, L.; Zhang, H.; Zhao, Q. L.; Chen, G.; Zha, J. W. High-toughness, extensile and self-healing PDMS elastomers constructed by decuple hydrogen bonding.Mater. Horiz.2024,11, 1305−1314..
Cai, Y. W.; Wang, G. G.; Mei, Y.-C.; Zhao, D.-Q.; Peng, J. J.; Sun, N.; Zhang, H. Y.; Han, J. C.; Yang, Y. Self-healable, super-stretchable and shape-adaptive triboelectric nanogenerator based on double cross-linked PDMS for electronic skins.Nano Energy2022,102, 107683..
Niu, W.; Li, Z.; Liang, F.; Zhang, H.; Liu, X. Ultrastable, superrobust, and recyclable supramolecular polymer networks.Angew. Chem. Int. Ed.2024,63, e202318434..
Li, Z.; Zhu, Y. L.; Niu, W.; Yang, X.; Jiang, Z.; Lu, Z. Y.; Liu, X.; Sun, J. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability.Adv. Mater.2021,33, 2101498..
0
浏览量
109
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构