FOLLOWUS
a.Department of Physics, City University of Hong Kong, Hong Kong 999077, China
b.Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
c.Department of Mathematics, The Chinese University of Hong Kong, Hong Kong 999077, China
liangdai@cityu.edu.hk
纸质出版日期:2024-12-01,
网络出版日期:2024-09-18,
收稿日期:2024-05-24,
修回日期:2024-06-12,
录用日期:2024-06-15
Scan QR Code
Qiu, Q. Y.; Zhu, Y. J.; Wu, Z. T.; Dai, L. A simple and efficient algorithm to identify the chirality of polymer knots based on the alexander polynomial. Chinese J. Polym. Sci. 2024, 42, 2030–2037
QI-YUAN QIU, YONG-JIAN ZHU, ZHONG-TAO WU, et al. A Simple and Efficient Algorithm to Identify the Chirality of Polymer Knots Based on the Alexander Polynomial. [J]. Chinese journal of polymer science, 2024, 42(12): 2030-2037.
Qiu, Q. Y.; Zhu, Y. J.; Wu, Z. T.; Dai, L. A simple and efficient algorithm to identify the chirality of polymer knots based on the alexander polynomial. Chinese J. Polym. Sci. 2024, 42, 2030–2037 DOI: 10.1007/s10118-024-3194-5.
QI-YUAN QIU, YONG-JIAN ZHU, ZHONG-TAO WU, et al. A Simple and Efficient Algorithm to Identify the Chirality of Polymer Knots Based on the Alexander Polynomial. [J]. Chinese journal of polymer science, 2024, 42(12): 2030-2037. DOI: 10.1007/s10118-024-3194-5.
We develop a simple and efficient algorithm to identify the chirality of polymer knots
which is very useful in the research of polymer knots. We prove the correctness of this algorithm mathematically.
Recent experimental observations of knotting in DNA and proteins have stimulated the simulation studies of polymer knots. Simulation studies usually identify knots in polymer conformations through the calculation of the Alexander polynomial. However
the Alexander polynomial cannot directly discriminate knot chirality
while knot chirality plays important roles in many physical
chemical
and biological properties. In this work
we discover a new relationship for knot chirality and accordingly
develop a new algorithm to extend the applicability of the Alexander polynomial to the identification of knot chirality. Our algorithm adds an extra step in the ordinary calculation of the Alexander polynomial. This extra step only slightly increases the computational cost. The correctness of our algorithm has been proved mathematically by us. The implication of this algorithm in physical research has been demonstrated by our studies of the tube model for polymer knots. Without this algorithm
we would be unable to obtain the tubes for polymer knots.
Polymer entanglementPolymer knotPolymer conformationTube modelMonte Carlo simulation
Ben-Naim, E.; Daya, Z. A.; Vorobieff, P.; Ecke, R. E. Knots and Random Walks in Vibrated Granular Chains.Phys. Rev. Lett.2001,86, 1414−1417..
Belmonte, A.; Shelley, M. J.; Eldakar, S. T.; Wiggins, C. H. Dynamic Patterns and Self-Knotting of a Driven Hanging Chain.Phys. Rev. Lett.2001,87, 114301..
Raymer, D. M.; Smith, D. E. Spontaneous knotting of an agitated string.Proc. Natl. Acad. Sci. U.S.A.2007,104, 16432−16437..
Soh, B. W.; Gengaro, I. R.; Klotz, A. R.; Doyle, P. S. Self-entanglement of a tumbled circular chain.Phys. Rev. Res.2019,1, 033194..
Patil, V. P.; Sandt, J. D.; Kolle, M.; Dunkel, J. Topological mechanics of knots and tangles.Science2020,367, 71−75..
Shaw, S. Y.; Wang, J. C. Knotting of a DNA chain during ring closure.Science1993,260, 533−536..
Rybenkov, V. V.; Cozzarelli, N. R.; Vologodskii, A. V. Probability of DNA knotting and the effective diameter of the DNA double helix.Proc. Natl. Acad. Sci. U.S.A.1993,90, 5307−5311..
Lim, N. C.; Jackson, S. E. Molecular knots in biology and chemistry.J. Phys. Condens. Matter2015,27, 354101..
Jamroz, M.; Niemyska, W.; Rawdon, E. J.; Stasiak, A.; Millett, K. C.; Sułkowski, P.; Sulkowska, J. I . KnotProt: A Database of Proteins with Knots and Slipknots. Nucleic Acids Res.2015, 43(D1), D306−D314..
Virnau, P.; Mirny, L. A.; Kardar, M. Intricate knots in proteins: Function and evolution.PLoS Comput. Biol.2006,2, e122..
Taylor, W. R. A deeply knotted protein structure and how it might fold.Nature2000,406, 916..
Leigh, D. A.; Schaufelberger, F.; Pirvu, L.; Stenlid, J. H.; August, D. P.; Segard, J. Tying different knots in a molecular strand.Nature2020,584, 562−568..
Arai, Y.; Yasuda, R.; Akashi, K.-i.; Harada, Y.; Miyata, H.; Kinosita, K.; Itoh, H. Tying a molecular knot with optical tweezers.Nature1999,399, 446−448..
Klotz, A. R.; Soh, B. W.; Doyle, P. S. Motion of Knots in DNA Stretched by Elongational Fields.Phys. Rev. Lett.2018,120, 188003..
Renner, C. B.; Doyle, P. S. Stretching self-entangled DNA molecules in elongational fields.Soft matter2015,11, 3105−3114..
Tang, J.; Du, N.; Doyle, P. S. Compression and selfentanglement of single DNA molecules under uniform electric field.Proc. Natl. Acad. Sci. U.S.A.2011,108, 16153−16158..
Zhu, L.; Wang, X.; Li, J.; Wang, Y. Radius of Gyration, Mean Span, and Geometric Shrinking Factors of Bridged Polycyclic Ring Polymers.Macromolecular Theory and Simulations2016,25, 482−496..
Ruan, Y.; Lu, Y.; An, L.; Wang, Z.-G. Multiple Entanglements between Two Chains in Polymer Melts: An Analysis of Primitive Paths Based on Frenet Trihedron.Macromolecules2024,57, 2792−2800..
Li, J.-X.; Wu, S.; Hao, L.-L.; Lei, Q.-L.; Ma, Y.-Q. Nonequilibrium Structural and Dynamic Behaviors of Polar Active Polymer Controlled by Head Activity.Physical Review Research2023,5, 43064..
Yan, J.; Zhang, X.; Wang, J.; Hu, W. Effects of Trefoil Knots on the Initiation of Polymer Crystallization.Macromolecules2024,57, 3914−3920..
Gong, H.; Li, J.-F.; Zhang, H.-D.; Shi, A.-C. ForceExtension Curve of an Entangled Polymer Chain: A Superspace Approach.Chinese Journal of Polymer Science2021,39, 1345−1350..
Marenduzzo, D.; Micheletti, C.; Orlandini, E. others Topological friction strongly affects viral DNA ejection.Proc Nat. Acad. Sci. U.S.A.2013,110, 20081−20086..
Marenduzzo, D.; Orlandini, E.; Stasiak, A.; Tubiana, L.; Sumners, D. W.; Tubianae, L.; Micheletti, C. DNA–DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting.Proc. Natl. Acad. Sci. U.S.A.2009,106, 22269−22274..
Qiao, Y.-P.; Ren, C.-L. Supercoiled DNA Minicircles under Double-Strand Breaks.Chinese Journal of Polymer Science2024, ..
Christian, T.; Sakaguchi, R.; Perlinska, A. P.; Lahoud, G.; Ito, T.; Taylor, E. A.; Yokoyama, S.; Sulkowska, J. I.; Hou, Y. Methyl transfer by substrate signaling from a knotted protein fold.Nat. Struct. Mol. Biol.2016,23, 941−948..
San Martxın, Á.; Rodriguez-Aliaga, P.; Molina, J. A.; x Martin, A.; Bustamante, C.; Baez, M. Knots can impair protein degradation by ATP-dependent proteases.Proc. Natl. Acad. Sci. U.S.A.2017,114, 9864−9869..
Zhang, L.; Stephens, A. J.; Nussbaumer, A. L.; Lemonnier, J.-F.; Jurˇcek, P.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Stereoselective synthesis of a composite knot with nine crossings.Nat. Chem.2018,10, 1083..
Fielden, S. D.; Leigh, D. A.; Woltering, S. L. Molecular knots.Angew. Chem2017,56, 11166−11194..
Horner, K. E.; Miller, M. A.; Steed, J. W.; Sutcliffe, P. M. Knot theory in modern chemistry.Chem. Soc. Rev.2016,45, 6432−6448..
Marcos, V.; Stephens, A. J.; Jaramillo-Garcia, J.; Nussbaumer, A. L.; Woltering, S. L.; Valero, A.; Lemonnier, J.-F.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Allosteric initiation and regulation of catalysis with a molecular knot.Science2016,352, 1555−1559..
Amin, S.; Khorshid, A.; Zeng, L.; Zimny, P.; Reisner, W. A nanofluidic knot factory based on compression of single DNA in nanochannels.Nat. Comm.2018,9, 1506..
Jain, A.; Dorfman, K. D. Simulations of knotting of DNA during genome mapping.Biomicrofluidics2017,11, 024117..
Reifenberger, J. G.; Dorfman, K. D.; Cao, H. Topological events in single molecules of E. coli DNA confined in nanochannels.Analyst2015,140, 4887−4894..
Lu, L.-W.; Wang, Z.-H.; Shi, A.-C.; Lu, Y.-Y.; An, L.-J. Polymer Translocation.Chinese Journal of Polymer Science2023,41, 683−698..
Orlandini, E. Statics and dynamics of DNA knotting.J. Phys. A2017,51, 053001..
Micheletti, C.; Marenduzzo, D.; Orlandini, E. Polymers with spatial or topological constraints: Theoretical and computational results.Phys. Rep.2011,504, 1−73..
Virnau, P.; Kantor, Y.; Kardar, M. Knots in globule and coil phases of a model polyethylene.J. Am. Chem. Soc.2005,127, 15102−15106..
Trefz, B.; Siebert, J.; Virnau, P. How molecular knots can pass through each other.Proc Natl Acad Sci U S A2014,111, 7948−7951..
Poier, P.; Likos, C. N.; Matthews, R. Influence of Rigidity and Knot Complexity on the Knotting of Confined Polymers.Macromolecules2014,47, 3394−3400..
Micheletti, C.; Orlandini, E. Knotting and Unknotting Dynamics of DNA Strands in Nanochannels.ACS Macro Lett.2014,3, 876−880..
D’Adamo, G.; Micheletti, C. Molecular Crowding Increases Knots Abundance in Linear Polymers.Macromolecules2015,48, 6337−6346..
Najafi, S.; Tubiana, L.; Podgornik, R.; Potestio, R. Chirality modifies the interaction between knots.EPL (Europhy. Lett.)2016,114, 50007..
Dai, L.; van der Maarel, J. R.; Doyle, P. S. Effect of nanoslit confinement on the knotting probability of circular DNA.ACS Macro Lett.2012,1, 732−736..
Dai, L.; Renner, C. B.; Doyle, P. S. Metastable Tight Knots in Semiflexible Chains.Macromolecules2014,47, 6135−6140..
Dai, L.; Renner, C. B.; Doyle, P. S. Origin of Metastable Knots in Single Flexible Chains.Phys. Rev. Lett.2015,114, 037801..
Dai, L.; Renner, C. B.; Doyle, P. S. Metastable Knots in Confined Semiflexible Chains.Macromolecules2015,48, 2812−2818..
Dai, L.; Doyle, P. S. Effects of Intrachain Interactions on the Knot Size of a Polymer.Macromolecules2016,49, 7581−7587..
Dai, L.; Doyle, P. S. Trapping a Knot into Tight Conformations by Intra-Chain Repulsions.Polymers2017,9, 57..
Dai, L.; Doyle, P. S. Universal Knot Spectra forConfined Polymers.Macromolecules2018,51, 6327−6333..
Dai, L.; Soh, B. W.; Doyle, P. S. Effects of Side Chains on Polymer Knots.Macromolecules2019,52, 6792−6800..
Sharma, R. K.; Agrawal, I.; Dai, L.; Doyle, P. S.; Garaj, S. Complex DNA knots detected with a nanopore sensor.Nat. Comm.2019,10, 1−9..
Richard, D.; Stalter, S.; Siebert, J.; Rieger, F.; Trefz, B.; Virnau, P. Entropic Interactions between Two Knots on a Semiflexible Polymer.Polymers2017,9, 55..
Najafi, S.; Podgornik, R.; Potestio, R.; Tubiana, L. Role of bending energy and knot chirality in knot distribution and their effective interaction along stretched semiflexible polymers.Polymers2016,8, 347..
Zhong, J.; Zhang, L.; August, D. P.; Whitehead, G. F.; Leigh, D. A. Self-Sorting Assembly of Molecular Trefoil Knots of Single Handedness.J. Am. Chem. Soc2019,141, 14249−14256..
Lukin, O.; V¨ogtle, F. Knotting and threading of molecules: chemistry and chirality of molecular knots and their assemblies.Angew. Chem. Int.2005,44, 1456−1477..
Arsuaga, J.; Vazquez, M.; McGuirk, P.; Trigueros, S.; Roca, J. others DNA knots reveal a chiral organization of DNA in phage capsids.Proc. Natl. Acad. Sci. U.S.A.2005,102, 9165−9169..
Valdés, A.; Martxınez-Garcxıa, B.; Segura, J.; Dyson, S.; Dxıaz-Ingelmo, O.; Roca, J. Quantitative disclosure of DNA knot chirality by high-resolution 2D-gel electrophoresis.Nucleic Acids Res.2019,47, e29−e29..
Shaw, S. Y.; Wang, J. C. Chirality of DNA trefoils: implications in intramolecular synapsis of distant DNA segments.Proc. Natl. Acad. Sci. U.S.A.1997,94, 1692−1697..
Arsuaga, J.; Vázquez, M.; Trigueros, S.; Sumners, D. W.; Roca, J. Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids.Proc. Natl. Acad. Sci. U.S.A.2002,99, 5373−5377..
Dai, L. Developing the tube theory for polymer knots.Phys. Rev. Res.2020,2, 022014..
Frank-Kamenetskii, M.; Vologodskii, A. Topological aspects of the physics of polymers: The theory and its biophysical applications.Sov. Phys. Usp.1981,24, 679..
Murasugi, K. On a certain numerical invariant of link types.Transactions of the American Mathematical Society1965,117, 387−422..
Lu, L.; Zhu, H.; Lu, Y.; An, L.; Dai, L. Application of the tube model to explain the unexpected decrease in polymer bending energy induced by knot formation.Macromolecules2020,53, 9443−9448..
Zhu, H.; Tian, F.; Sun, L.; Wang, S.; Dai, L. Revisiting the Non-monotonic Dependence of Polymer Knotting Probability on the Bending Stiffness.Macromolecules2021,54, 1623−1630..
Dai, L. Tube Model for Polymer Knots with Excluded Volume Interactions and Its Applications.Macromolecules2021,54, 9299−9306..
Zhu, Y.; Zhu, H.; Tian, F.; Qiu, Q.; Dai, L. Quantifying the Effects of Slit Confinement on Polymer Knots Using the Tube Model. Phys. Rev. E2022,105(2), 024501..
Lu, L.; Qiu, Q.; Lu, Y.; An, L.; Dai, L. Knotting in Flexible-Semiflexible Block Copolymers. Macromolecules2024,57(11), 5330−5339..
0
浏览量
34
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构