FOLLOWUS
a.Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
c.State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
d.Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
hpfang@xmu.edu.cn (H.P.F.)
thy@xmu.edu.cn (H.Y.T.)
纸质出版日期:2024-11-30,
网络出版日期:2024-08-20,
收稿日期:2024-04-22,
修回日期:2024-05-14,
录用日期:2024-05-22
Scan QR Code
Guo, X. Y.; Yang, Z. Y.; Fang, H. P.; Zhou, D. H.; Pang, X.; Tian, H. Y.; Chen, X. S. Modulating the oxidation degree of linear polyethyleneimine for preparation of highly efficient and low-cytotoxicity degradable gene delivery carriers. Chinese J. Polym. Sci. 2024, 42, 1699–1709
Xiao-Ya Guo, Zhi-Yu Yang, Hua-Pan Fang, et al. Modulating the Oxidation Degree of Linear Polyethyleneimine for Preparation of Highly Efficient and Low-cytotoxicity Degradable Gene Delivery Carriers. [J]. Chinese Journal of Polymer Science, 2024,42(11):1699-1709.
Guo, X. Y.; Yang, Z. Y.; Fang, H. P.; Zhou, D. H.; Pang, X.; Tian, H. Y.; Chen, X. S. Modulating the oxidation degree of linear polyethyleneimine for preparation of highly efficient and low-cytotoxicity degradable gene delivery carriers. Chinese J. Polym. Sci. 2024, 42, 1699–1709 DOI: 10.1007/s10118-024-3171-z.
Xiao-Ya Guo, Zhi-Yu Yang, Hua-Pan Fang, et al. Modulating the Oxidation Degree of Linear Polyethyleneimine for Preparation of Highly Efficient and Low-cytotoxicity Degradable Gene Delivery Carriers. [J]. Chinese Journal of Polymer Science, 2024,42(11):1699-1709. DOI: 10.1007/s10118-024-3171-z.
The article describes the preparation of an efficient
degradable
simple to prepare DNA delivery carrier
oxidized PEI (oxPEI)
using the “green oxidant” hydrogen peroxide to oxidize linear PEI (LPEI). It addresses the challenge of non-degradability of PEI
which is significant for advancing the further application of PEI.
Polyethyleneimine (PEI)
as a widely used polymer material in the field of gene delivery
has been extensively studied for modification and shielding to reduce its cytotoxicity. However
research aimed at preparing degradable PEI is scarce. In this work
the hydrogen peroxide (H
2
O
2
) oxidation method was used to introduce degradable amide groups in the PEI and a series of oxidized PEI22k (oxPEI22k) with different degrees of oxidation were synthesized by regulating the dosage of H
2
O
2
. The relationship between the oxidation degree of oxPEI22k and the gene transfection efficiency of oxPEI22k was studied in detail
confirming that the oxPE
I22k with oxidation degrees of 16.7% and 28.6% achieved improved transfection efficiency compared to unmodified PEI. These oxPEI22k also proved reduced cytotoxicity and improved degradability. Further
this strategy was extended to the synthesis of low-molecular-weight oxPEI1.8k. The oxPEI1.8k with suitable oxidation degree also achieved improved transfection efficiency and reduced cytotoxicity. In brief
this work provided high-efficiency and low-cytotoxicity degradable gene delivery carriers by regulating the oxidation degree of PEI
which was of great significance for promoting clinical applications of PEI.
PolyethyleneimineGene deliveryGene transfectionDegradable gene carriers
Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture andin vivo: polyethylenimine.Proc. Natl. Acad. of Sci. U. S. A.1995,92, 7297−7301..
Liu, Y.; Wang, Q.; Chen, M.; Wang, Y.; Lei, Y.; Huang, W.; Meng, M.; Lu, Y. A core-shell polyethyleneimine-mediated apoptosis-related gene delivery for anti-tumor therapy.Nano2020,15, 2050057..
Jia, Y.; Niu, D.; Li, Q.; Huang, H.; Li, X.; Li, K.; Li, L.; Zhang, C.; Zheng, H.; Zhu, Z.; Yao, Y.; Zhao, X.; Li, P.; Yang, G. Effective gene delivery of shBMP-9 using polyethyleneimine-based core-shell nanoparticles in an animal model of insulin resistance.Nanoscale2019,11, 2008−2016..
Burke, R. S.; Pun, S. H. Extracellular barriers toin vivoPEI and PEGylated PEI polyplex-mediated gene delivery to the liver.Bioconjugate. Chem.2008,19, 693−704..
Ahn, H. H.; Lee, J. H.; Kim, K. S.; Lee, J. Y.; Kim, M. S.; Khang, G.; Lee, I. W.; Lee, H. B. Polyethyleneimine-mediated gene delivery into human adipose derived stem cells.Biomaterials2008,29, 2415−2422..
Liu, L.; Yang, Z.; Liu, C.; Wang, M.; Chen, X. Preparation of PEI-modified nanoparticles by dopamine self-polymerization for efficient DNA delivery.Biotechnol. Appl. Biochem.2023,70, 824−834..
Wang, X.; Niu, D.; Hu, C.; Li, P. Polyethyleneimine-based nanocarriers for gene delivery.Current Pharmaceut. Design2015,21, 6140−6156..
Dong, S.; Feng, Z.; Ma, R.; Zhang, T.; Jiang, J.; Li, Y.; Zhang, Y.; Li, S.; Liu, X.; Liu, X.; Meng, H. Engineered design of a mesoporous silica nanoparticle-based nanocarrier for efficient mRNA deliveryin vivo.Nano Lett.2023,23, 2137−2147..
Wang, F.; Gao, L.; Meng, L. Y.; Xie, J. M.; Xiong, J. W.; Luo, Y. A neutralized noncharged polyethylenimine-based system for efficient delivery of siRNA into heart without toxicity.ACS Appl. Mater. Interfaces2016,8, 33529−33538..
Xia, T.; Kovochich, M.; Liong, M.; Meng, H.; Kabehie, S.; George, S.; Zink, J. I.; Nel, A. E. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs.ACS Nano2009,3, 3273−3286..
Jerzykiewicz, J.; Czogalla, A. Polyethyleneimine-based lipopolyplexes as carriers in anticancer gene therapies.Materials2022,15, 179..
Song, W.; Du, J.; Sun, T.; Zhang, P.; Wang, J. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery.Small2010,6, 239−246..
Marquet, A. M.; Hagen, H.; Stanchieri, M.; Beinier, V. S.; Grasso, G.; Danani, A.; Patrulea, V.; Borchard, G. Clickable polyethyleneimine incorporated into triblock copolymeric micelles as an efficient platform in the delivery of siRNA to NSCLC cells.Int. J. Pharmaceutics2024,649, 123632..
Chertok, B.;David, A. E.; Yang, V. C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration.Biomaterials2010,31, 6317−6324..
Grabowska, A. M.; Kircheis, R.; Kumari, R.; Clarke, P.; McKenzie, A.; Hughes, J.; Mayne, C.; Desai, A.; Sasso, L.; Watson, S. A.; Alexander, C. Systemicin vivodelivery of siRNA to tumours using combination of polyethyleneimine and transferrin-polyethyleneimine conjugates.Biomater. Sci.2015,3, 1439−1448..
Zheng, M.; Pavan, G. M.; Neeb, M.; Schaper, A. K.; Danani, A.; Klebe, G.; Merkel, O. M.; Kissel, T. Targeting the blind spot of polycationic nanocarrier-based siRNA delivery.ACS Nano2012,6, 9447−9454..
Chiong, J. A.; Tran, H.; Lin, Y.; Zheng, Y.; Bao, Z. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics.Adv. Sci.2021,8, 2101233..
Deng, J.; Sun, Y.; Wang, H.; Li, C.; Huang, F.; Cheng, S.; Zhuo, R.; Zhang, X. Poly(β-amino amine) cross-linked PEIs as highly efficient gene vectors.Acta Biomater.2011,7, 2200−2208..
Jiang, H.; Islam, M. A.; Xing, L.; Firdous, J.; Cao, W.; He, Y.; Zhu, Y.; Cho, K.; Li, H.; Cho, C. Degradable polyethylenimine-based gene carriers for cancer therapy.Top. Current Chem.2017,375, 34..
Zhao, C.; Shao, L.; Lu, J.; Deng, X.; Wu, Y. Tumor acidity-induced sheddable polyethylenimine-poly(trimethylene carbonate)/DNA/polyethylene glycol-2,3-dimethylmaleicanhydride ternary complex for efficient and safe gene delivery.ACS Appl. Mater. Interfaces2016,8, 6400−6410..
Chen, J.; Jiao, Z.; Lin, L.; Guo, Z.; Xu, C.; Li, Y.; Tian, H.; Chen, X. Polylysine-modified polyethylenimines as siRNA carriers for effective tumor treatment.Chinese J. Polym. Sci.2015,33, 830−837..
Zhang, B.; Ma, X.; Sui, M.; Kirk, E. V.; Murdoch, W. J.; Radosz, M.; Lin, N.; Shen, Y. Guanidinoamidized linear polyethyleneimine for gene delivery.Chinese J. Polym. Sci.2015,33, 908−919..
Guo, Z.; Lin, L.; Chen, J.; Tian. H.; Chen, X. Polyglutamic acid grafted polyethylene glycol@calcium carbonate based shielding system for improving polyethyleneimine gene transfection efficiency.Chem. J. Chinese Univ.2020,41, 235−242..
Xia, J. L.; Tian, H. Y.; Chen, J.; Guo, Z. P.; Lin, L.; Yang, H. Y.; Feng, Z. C. Polyglutamic acid based polyanionic shielding system for polycationic gene carriers.Chinese J. Polym. Sci.2016,34, 316−323..
Xu, J.; Lai, Y.; Wang, F.; Zou, Z.; Pei, R.; Yu, H.; Xu, Z. Dual stimuli-activatable versatile nanoplatform for photodynamic therapy and chemotherapy of triple-negative breast cancer.Chinese Chem. Lett.2023,34, 108332..
Zhou, F.; Huang, L.; Li, S.; Yang, W.; Chen, F.; Cai, Z.; Liu, X.; Xu, W.; Lehto, V.-P.; Lächelt, U.; Huang, R.; Shi, Y.; Lammers, T.; Tao, W.; Xu, Z. P.; Wagner, E.; Xu, Z.; Yu, H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy.Exploration2023, 20210146..
Schroeder, A.; Dahlman, J. E.; Sahay, G.; Love, K. T.; Jiang, S.; Eltoukhy, A. A.; Levins, C. G.; Wang, Y.; Anderson, D. G. Alkane-modified short polyethyleneimine for siRNA delivery.J. Control. Rel.2012,160, 172−176..
Taranejoo, S.; Liu, J.; Verma, P.; Hourigan, K. A review of the developments of characteristics of PEI derivatives for gene delivery applications.J. Appl. Polym. Sci.2015,132, 42096..
Xiao, Y.; Zhang, J.; Liu, Y.; Zhang, J.; Yu, Q.; Huang, Z.; Yu, X. Low molecular weight PEI-based fluorinated polymers for efficient gene delivery.Eur. J. Med. Chem.2019,162, 602−611..
Li, J.; Wu, Y.; Xiang, J.; Wang, H.; Zhuang, Q.; Wei, T.; Cao, Z.; Gu, Q.; Liu, Z.; Peng, R. Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines.Chem. Eng. J.2023,456, 140930..
Lin, L.; Guo, Z. P.; Chen, J.; Tian, H.Y.; Chen, X. S. Synthesis and characterization of polyphenylalanine grafted low molecular weight PEI as efficient gene carriers.Acta Polymerica Sinica(in Chinese)2017, 321−328..
Gao, J.; Zhang, H.; Zhou, F.; Hou, B.; Chen, M.; Xie, Z.; Yu, H. Acid-activatible micelleplex delivering siRNA-PD-L1 for improved cancer immunotherapy of CDK4/6 inhibition.Chinese Chem. Lett.2021,32, 1929−1936..
Yang, Z.; Lin, L.; Guo, Z.; Guo, X.; Tang, Z.; Tian, H.; Chen, X. Synthetic helical polypeptide as a gene transfection enhancer.Biomacromolecules2022,23, 2867−2877..
Fang, H.; Guo, Z.; Chen, J.; Lin, L.; Hu, Y.; Li, Y.; Tian, H.; Chen, X. Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo.Nat. Commun.2021,12, 6742..
Peng, Q.; Chen, F.; Zhong, Z.; Zhuo, R. Enhanced gene transfection capability of polyethylenimine by incorporating boronic acid groups.Chem. Commun.2010,46, 5888−5890..
Wang, L. H.; Wu, D. C.; Xu, H. X.; You, Y. Z. High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core.Angew. Chem. Int. Ed.2016,55, 755−759..
Haas, H. C.; Schuler, X. W.; Jiacdonald, R. L. Oxidized polyethylenimine.J. Polym. Sci.1972,10, 3143−3158..
Seow, W. Y.; Liang, K.; Kurisawa, M.; Hauser, C. A. E. Oxidation as a facile strategyto reduce the surface charge and toxicity of polyethyleneimine gene carriers.Biomacromolecules2013,14, 2340−2346..
Englert, C.; Hartlieb, M.; Bellstedt, P.; Kempe, K.; Yang, C.; Chu, S. K.; Ke, X.; Garcı́a, J. M.; Ono, R. J.; Fevre, M.; Wojtecki, R. J.; Schubert, U. S.; Yang, Y.; Hedrick, J. L. Enhancing the biocompatibility and biodegradability of linear poly(ethylene imine) through controlled oxidation.Macromolecules2015,48, 7420−7427..
Mukherjee, C.; Varghese, D.; Krishna, J. S.; Boominathan, T.; Rakeshkumar, R.; Dineshkumar, S.; Rao, C. V. S. B.; Sivaramakrishna, A. Recent advances in biodegradable polymers–properties, applications and future prospects.Eur. Polym. J.2023,192, 112068..
Nair, L. S.; Laurencin, C. T. Biodegradable polymers as biomaterials.Prog. Polym. Sci.2007,32, 762−798..
0
浏览量
71
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构