Catalyst-free and Reprocessable Aromatic Polydithiourethanes
RESEARCH ARTICLE|Updated:2024-09-23
|
Catalyst-free and Reprocessable Aromatic Polydithiourethanes
Catalyst-free and Reprocessable Aromatic Polydithiourethanes
高分子科学(英文版)2024年42卷第10期 页码:1435-1441
Affiliations:
a.State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
b.Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
Author bio:
zhengning@zju.edu.cn
Funds:
This work was financially supported by the National Natural Science Foundation of China (Nos. 22275162 and 52322307).
Yang, B.; Feng, H. J.; Ni, T. T.; Zhou, X. R.; Xie, T.; Zheng, N. Catalyst-free and reprocessable aromatic polydithiourethanes. Chinese J. Polym. Sci. 2024, 42, 1435–1441
Bo Yang, Hai-Jun Feng, Tian-Tian Ni, et al. Catalyst-free and Reprocessable Aromatic Polydithiourethanes[J]. Chinese Journal of Polymer Science, 2024,42(10):1435-1441.
Yang, B.; Feng, H. J.; Ni, T. T.; Zhou, X. R.; Xie, T.; Zheng, N. Catalyst-free and reprocessable aromatic polydithiourethanes. Chinese J. Polym. Sci. 2024, 42, 1435–1441 DOI: 10.1007/s10118-024-3166-9.
Bo Yang, Hai-Jun Feng, Tian-Tian Ni, et al. Catalyst-free and Reprocessable Aromatic Polydithiourethanes[J]. Chinese Journal of Polymer Science, 2024,42(10):1435-1441. DOI: 10.1007/s10118-024-3166-9.
Catalyst-free and Reprocessable Aromatic Polydithiourethanes
This study reveals that the aromatic dithiocarbamate bonds can undergo reversible dissociation under mild conditions in the absence of a catalyst. The superior dynamic capability of dithiocarbamate bonds enables the reprocessing of crosslinked polydithiourethane while maintaining its original mechanical properties.
Abstract
The incorporation of dynamic covalent bonds into thermosets facilitates the reprocessing of polymer networks
thereby meeting the sustainable requirements for polymer recycling. However
the mechanical properties of many materials often decline significantly upon reprocessing due to side reactions caused by harsh processing conditions. In this work
we find that the aromatic dithiocarbamate bond can undergo dissociation under mild conditions without the need for a catalyst
enabling the efficient reprocessing of the corresponding polydithiourethane. As a consequence
the mechanical properties of the polydithiourethane can be largely preserved after reprocessing. The discovery of this dynamic chemistry is anticipated to broaden the potential for material design in dynamic covalent polymer networks.
关键词
Keywords
ReprocessingPolydithiourethaneDynamic covalent bond
references
Jenna, R. J.; Roland G.; Chris, W.; Theodore, R. S.; Miriam, P.; Anthony, A.; Ramani, N.; Karalavender, L. Plastic waste inputs from land into theocean.Science2015,347, 768−771..
Garcia, J. M.; Robertson, M. L. The future of plastics recycling.Science2017,358, 871−872..
Liu, X.; Li, Y.; Fang, X.; Zhang, Z.; Li, S.; Sun, J. Healable and recyclable polymeric materials with high mechanical robustness.ACS Mater. Lett.2022,4, 554−571..
Hong, M.; Chen, E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability.Green Chem.2017,19, 3692−3706..
Li, Z.; Shen, Y.; Li, Z. Ring-opening polymerization of lactones to prepare closed-loop recyclable polyesters.Macromolecules 2024 , 57, 5, 1919–1940..
Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing.Chem. Rev.2021,121, 1716−1745..
Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis.Science2017,356, 62−65..
Li, Z.; Zhong, J.; Liu, M.; Rong, J.; Yang, K.; Zhou, J.; Shen, L.; Gao, F.; He, H. Investigation on self-healing property of epoxy resins based on disulfide dynamic links.Chinese J. Polym. Sci.2020,38, 932−940..
Yang, S.; Liu, W.; Guo, J.; Yang, Z.; Qiao, Z.; Zhang, C.; Liu, J.; Xu, J.; Zhao, N. Direct and catalyst-free ester metathesis reaction for covalent adaptable networks.J. Am. Chem. Soc.2023,145, 20927−20935..
Kim, C.; Ejima, H.; Yoshie, N. Polymers with autonomous self-healing ability and remarkable reprocessability under ambient humidity conditions.J. Mater. Chem. A2018,6, 19643−19652..
Scheutz, G. M.; Lessard, J. J.; Sims, M. B.; Sumerlin, B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets.J. Am. Chem. Soc.2019,141, 16181−16196..
Cui, C.; An, L.; Zhang, Z.; Ji, M.; Chen, K.; Yang, Y., Su, Q.; Wang, F.; Cheng, Y.; Zhang, Y. Reconfigurable 4D printing of reprocessable and mechanically strong polythiourethane covalent adaptable networks.Adv. Funct. Mater.2022,232, 2203720..
Ye, J.; Zu, Z.; Lin, Z.; Xiang, H.; Zhang, M. Intrinsic self-healing polysiloxane materials: from single dynamic crosslinked network to multiple dynamic crosslinked networks.Acta Polymerica Sinica(in Chinese)2023,54, 1028−1054..
Wang, Y.; Yang, L.; Zhang, L.; Huang, H.; Qian, B.; Gu, S.; You, Z. Solvent-free synthesis of self-healable and recyclable crosslinked polyurethane based on dynamic oxime-urethane bonds.Chinese J. Polym. Sci.2023,41, 1725−1732..
Ephraim, G. M.; Mara, L. P.; Douglas, G. I.; Wang H.; Johnson, A.; Daniels, D.; Rizvi, A.; Sottos, R.N.; Steven, C. Z. End-of-life upcycling of polyurethanes using a room temperature, mechanism-based degradation.Nat. Chem.2023,15, 569−577..
Ma, Y.; Jiang, X.; Yin, J.; Christoph, W.; José Augusto, B.; Shi, Z. Chemical upcycling of conventional polyureas into dynamic covalent poly(aminoketoenamide)s.Angew. Chem. Int. Ed.2023,62, e202212870..
Feng, H.; Zheng, N.; Peng, W.; Ni, C.; Song, H.; Zhao, Q.; Xie, T. Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening.Nat. Commun.2022,13, 397..
Cash, J. J.; Kubo, T.; Abhijeet, P. B.; Sumerlin, B. S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters.Macromolecules2015,48, 2098−2106..
Guo, Z.; Lu, X.; Wang, X.; Li, X.; Li, J.; Sun, J. Engineering of chain rigidity and hydrogen bond cross-linking toward ultra-strong, healable, recyclable, and water-resistant elastomers.Adv. Mater.2023,35, 2300286..
Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, M. J.; Du Prez, E. F. Vinylogous urethane vitrimers.Adv. Funct. Mater.2015,25, 2451−2457..
Yoshiaki, Y.; Kenji, O.; Takeshi, E. Reprocessable aliphatic polydithiourethanes based on the reversible addition reaction of diisothiocyanates and dithiols.Macromolecules2019,52, 6080−6087..
Cui, C.; Chen, X.; Ma, L.; Zhong, Q.; Li, Z.; An, L.; Zhang, Y. Polythiourethane covalent adaptable networks for strong and reworkable adhesives and fully recyclable carbon fiber-reinforced composites.ACS Appl. Mater. Interfaces2020,12, 47975−47983..
Li, Y.; Zhang, Z.; Rong, M.; Zhang, M. Sunlight stimulated photochemical self-healing polymers capable of re-bonding damages up to a centimeter below the surface even out of the reach of the illumination.Adv. Mater.2023,34, 2211009..
Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation.Angew. Chem. Int. Ed.2016,55, 11421−11425..