FOLLOWUS
a.Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
b.College of Pharmacy, Guilin Medical University, Guilin 541199, China
c.School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
yygong@glut.edu.cn (Y.Y.G.)
wzhyuan@sjtu.edu.cn (W.Z.Y.)
纸质出版日期:2024-11-30,
网络出版日期:2024-08-20,
收稿日期:2024-03-08,
修回日期:2024-04-27,
录用日期:2024-05-12
Scan QR Code
He, J.; Song, H. J.; Liu, Z. A.; Jiang, B. L.; Gong, Y. Y.; Yuan, W. Z. Efficient and pH-sensitive nonconventional luminescent polymers for cellular imaging and ion detection. Chinese J. Polym. Sci. 2024, 42, 1679–1689
Jiao He, Hua-Jian Song, Zuo-An Liu, et al. Efficient and pH-Sensitive Nonconventional Luminescent Polymers for Cellular Imaging and Ion Detection. [J]. Chinese Journal of Polymer Science, 2024,42(11):1679-1689.
He, J.; Song, H. J.; Liu, Z. A.; Jiang, B. L.; Gong, Y. Y.; Yuan, W. Z. Efficient and pH-sensitive nonconventional luminescent polymers for cellular imaging and ion detection. Chinese J. Polym. Sci. 2024, 42, 1679–1689 DOI: 10.1007/s10118-024-3161-1.
Jiao He, Hua-Jian Song, Zuo-An Liu, et al. Efficient and pH-Sensitive Nonconventional Luminescent Polymers for Cellular Imaging and Ion Detection. [J]. Chinese Journal of Polymer Science, 2024,42(11):1679-1689. DOI: 10.1007/s10118-024-3161-1.
Nonconventional luminescent polymers exhibit remarkably high luminescence efficiency
reaching up to 9.2% in dilute solutions (0.1 mg/mL)
and their optical properties are highly responsive to a range of variables
including pH
excitation wavelength
concentration
temperature and metal ions. Due to these unique optical properties and their good biocompatibility
these materials have emerged as a promising class of materials for cell imaging applications.
Nonconventional luminescent materials (NLMs) are a type of organic luminescent materials that does not contain aromatic units. Due to the simplicity of the synthesis process
mild reaction conditions
good hydrophilicity and biological compatibility
NLMs have attracted much attention. Nevertheless
numerous reports indicate that NLMs can only effectively luminesce at high concentrations and in solid state
which limits their applicability in the field of cell imaging. This study addresses this limitation by designing and synthesizing oligomers P1
P2 and P3 using ethylene glycol diglycidyl ether and amine compounds containing ethylene groups. These oligomers exhibit remarkable luminescence efficiency reaching as high as 9.2% in dilute solutions (0.1 mg/mL)
making them among the best NLMs in this category. Furthermore
the synthesized oligomers exhibit excitation wavelength-dependent and concentration-dependent luminescence intensity
fluorescence response to temperature and pH changes
as well as the ability to identify Fe
3+
Cu
2+
and Mo
5+
in dilute solutions. These characteristics render them potentially useful in the for cell imaging.
ClusteroluminescenceNonconventional luminescent materialsDilute solutionsCell imaging
Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Highly efficient phosphorescent emission from organic electroluminescent devices.Nature1998,395, 151−154..
Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: the whole is more brilliant than the parts.Adv. Mater.2014,26, 5429−5479..
Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H. C. Luminescent sensors based on metal-organic frameworks.Coord. Chem. Rev.2018,354, 28−45..
Jiang, X.; Wang, Q.; Li, B.; Li, S.; Kong, X. Z. Fluorescence behavior and emission mechanisms of poly(ethylene succinamide) and its applications in Fe3+detection and data encryption.Chinese J. Polym. Sci.2023,41, 129−142..
Gong, Y.; Tan, Y.; Mei, J.; Zhang, Y.; Yuan, W.; Zhang, Y.; Sun, J.; Tang, B. Z. Room temperature phosphorescence from natural products: crystallization matters.Sci. China Chem.2013,56, 1178−1182..
Bauri, K.; Saha, B.; Banerjee, A.; De, P. Recent advances in the development and applications of nonconventional luminescent polymers.Polym. Chem.2020,11, 7293−7315..
Deng, J.; Jia, H.; Xie, W.; Wu, H.; Li, J.; Wang, H. Nontraditional organic/polymeric luminogens with red-shifted fluorescence emissions.Macromol. Chem. Phys. 2022, 223..
Du, Y.; Bai, T.; Ding, F.; Yan, H.; Zhao, Y.; Feng, W. The inherent blue luminescence from oligomeric siloxanes.Polym. J.2019,51, 869−882..
Du, Y.; Yan, H.; Huang, W.; Chai, F.; Niu, S. Unanticipated strong blue photoluminescence from fully biobased aliphatic hyperbranched polyesters.ACS Sustainable Chem. Eng.2017,5, 6139−6147..
He, B.; Zhang, J.; Zhang, J.; Zhang, H.; Wu, X.; Chen, X.; Kei, K. H. S.; Qin, A.; Sung, H. H. Y.; Lam, J. W. Y.; Tang, B. Z. Clusteroluminescence from cluster excitons in small heterocyclics free of aromatic rings.Adv. Sci.2021,8, 2004299−2004308..
Ji, X.; Tian, W.; Jin, K.; Diao, H.; Huang, X.; Song, G.; Zhang, J. Anionic polymerization of nonaromatic maleimide to achieve full-color nonconventional luminescence.Nat. Commun.2022,13, 3717..
Jiang, N.; Zhu, D.; Su, Z.; Bryce, M. R. Recent advances in oligomers/polymers with unconventional chromophores.Mater. Chem. Front.2021,5, 60−75..
Meng, Y.; Guo, S.; Jiang, B.; Zhang, X.; Zou, L.; Wei, C.; Gong, Y.; Wu, S.; Liu, Y. Boosting the humidity resistance of nonconventional luminogens with room temperature phosphorescence via enhancing the strength of hydrogen bonds.J. Mater. Chem. C2021,9, 8515−8523..
Shang, C.; Zhao, Y.; Long, J.; Ji, Y.; Wang, H. Orange-red and white-emitting nonconventional luminescent polymers containing cyclic acid anhydride and lactam groups.J. Mater. Chem. C2020,8, 1017−1024..
Wang, Q.; Li, B.; Cao, H.; Jiang, X.; Kong, X. Z. Aliphatic amide salt, a new type of luminogen: characterization, emission and biological applications.Chem. Eng. J.2020,388, 124182−124192..
Zhou, X.; Luo, W.; Nie, H.; Xu, L.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Z. Oligo(maleic anhydride)s: a platform for unveiling the mechanism of clusteroluminescence of non-aromatic polymers.J. Mater. Chem. C2017,5, 4775−4779..
Zhang, X.; Bai, Y.; Deng, J.; Zhuang, P.; Wang, H. Effects of nonaromatic through-bond conjugation and through-space conjugation on the photoluminescence of nontraditional luminogens.Aggregate2024,5, e517..
Du, Y.; Liu, Y.; Li, J.; He, Y.; Li, Y.; Yan, H. Nonconventional luminescent piperazine-containing hyperbranched polysiloxanes with puren-electron.Small2023,19, 2302095..
Zhang, H.; Zhao, Z.; McGonigal, P. R.; Ye, R.; Liu, S.; Lam, J. W. Y.; Kwok, R. T. K.; Yuan, W. Z.; Xie, J.; Rogach, A. L.; Tang, B. Z. Clusterization-triggered emission: uncommon luminescence from common materials.Mater. Today2020,32, 275−292..
Du, L. L.; Jiang, B. L.; Chen, X. H.; Wang, Y. Z.; Zou, L. M.; Liu, Y. L.; Gong, Y. Y.; Wei, C.; Yuan, W. Z. Clustering-triggered emission of cellulose and its derivatives.Chinese J. Polym. Sci.2019,37, 409−415..
Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan, W. Z.; Zhang, Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids).Sci. China Chem.2018,61, 351−359..
Dou, X.; Zhou, Q.; Chen, X.; Tan, Y.; He, X.; Lu, P.; Sui, K.; Tang, B. Z.; Zhang, Y.; Yuan, W. Z. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate.Biomacromolecules2018,19, 2014−2022..
Zhou, Q.; Yang, T.; Zhong, Z.; Kausar, F.; Wang, Z.; Zhang, Y.; Yuan, W. Z. A clustering-triggered emission strategy for tunable multicolor persistent phosphorescence.Chem. Sci.2020,11, 2926−2933..
Tomalia, D. A.; Klajnert-Maculewicz, B.; Johnson, K. A. M.; Brinkman, H. F.; Janaszewska, A.; Hedstrand, D. M. Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores.Prog. Polym. Sci.2019,90, 35−117..
Tang, S.; Yang, T.; Zhao, Z.; Zhu, T.; Zhang, Q.; Hou, W.; Yuan, W. Z. Nonconventional luminophores: characteristics, advancements and perspectives.Chem. Soc. Rev.2021,50, 12616−12655..
Luo, J.; Guo, S.; Chen, F.; Jiang, B.; Wei, L.; Gong, Y.; Zhang, B.; Liu, Y.; Wei, C.; Tang, B. Z. Rational design strategies for nonconventional luminogens with efficient and tunable emission in dilute solution.Chem. Eng. J.2023,454, 140469−140477..
Dong, L.; Fu, W.; Liu, P.; Shi, J.; Tong, B.; Cai, Z.; Zhi, J.; Dong, Y. Spontaneous multicomponent polymerization of imidazole, diacetylenic esters, and diisocyanates for the preparation of poly(β-aminoacrylate)s with cluster-induced emission characteristics.Macromolecules2020,53, 1054−1062..
Li, Q.; Wang, X.; Huang, Q.; Li, Z.; Tang, B. Z.; Mao, S. Molecular-level enhanced clusterization-triggered emission of nonconventional luminophores in dilute aqueous solution.Nat. Commun.2023,14, 409−420..
Huang, Q.; Cheng, J.; Tang, Y.; Wu, Y.; Xia, D.; Zheng, Y.; Guo, M. Significantly red-shifted emissions of nonconventional AIE polymers containing zwitterionic components.Macromol. Rapid Commun.2021,42, 2100174−2100182..
Chen, F. X.; Jin, Y. X.; Luo, J.; Wei, L. Z.; Jiang, B. L.; Guo, S.; Wei, C.; Gong, Y. Y. Poly-L-aspartic acid based nonconventional luminescent biomacromolecules with efficient emission in dilute solutions for Al3+detection.Int. J. Biol. Macromol.2023,226, 1387−1395..
Tang, X. S.; Jiang, B. L.; Gong, Y. Y.; Jin, Y. X.; He, J.; Xie, H. H.; Guo, S.; Liu, Y. L. Designing nonconventional luminescent materials with efficient emission in dilute solutionsviamodulation of dynamic hydrogen bonds.Molecules2023,28, 5240..
Lindahl; Erik; Abraham; Hess; Spoel, v. d.GROMACS 2020.6 Source code, https://doi.org/10.5281/zenodo.4576055.
Lu, T. Sobtop:A tool of generating forcefield parameters and GROMACS topology file.Sobtop 1.0 (dev3.1), http://sobereva.com/soft/Sobtop(accessed on 1, Aug, 2022).
Van Der Spoel, D.; Van Maaren, P. J.; Larsson, P.; Tîmneanu, N. Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media.J. Phy. Chem. B2006,110, 4393−4398..
Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory.J. Comput. Chem.2019,40, 2868−2881..
Morris, J. V.; Mahaney, M. A.; Huber, J. R. Fluorescence quantum yield determinations. 9,10-Diphenylanthracene as a reference standard in different solvents.J. Phys. Chem.1976,80, 969−974..
Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer.J. Comput. Chem.2012,33, 580−592..
Lu, T.; Chen, Q. A simple method of identifyingπorbitals for non-planar systems and a protocol of studyingπelectronic structure.Theor. Chem. Acc.2020,139, 25..
Zou, L. M.; Guo, S.; Lv, H. Y.; Chen, F. X.; Wei, L. Z.; Gong, Y. Y.; Liu, Y. L.; Wei, C. Molecular design for organic luminogens with efficient emission in solution and solid-state.Dyes Pigm.2022,198, 109958−109966..
Zeng, W.; Gong, S.; Zhong, C.; Yang, C. Prediction of oscillator strength and transition dipole moments with the nuclear ensemble approach for thermally activated delayed fluorescence emitters.J. Phys. Chem. C2019,123, 10081−10086..
Mohapatra, D.; Pratap, R.; Pandey, V.; Shreya, S.; Senapati, P. C.; Dubey, P. K.; Parmar, A. S.; Sahu, A. N.In vitrocancer cell imaging, free radical scavenging, and Fe3+sensing activity of green synthesized carbon dots from leaves of piper longum.J. Cluster Sci. 2023, 34, 1269-1290..
Wang, H.; Wang, X.; Kong, R. M.; Xia, L.; Qu, F. Metal-organic framework as a multi-component sensor for detection of Fe3+, ascorbic acid and acid phosphatase.Chin. Chem. Lett.2021,32, 198−202..
Erdemir, S.; Malkondu, S.; Kocyigit, O. A blue/red dual-emitting multi-responsive fluorescent probe for Fe3+, Cu2+and cysteine based on isophorone-antharecene.Microchem. J.2020,157, 105075..
Zhang, Y.; Yuan, F.; Yan, K.; Zhang, M.; Li, Y.; Wang, G.; Jiang, H.; Wang, X.; Zhu, J.; Sun, J.; Xu, S.; Hu, J.; Wang, Y.; Zhen, R.; Yan, X. Long-term waterborne Cu2+exposure affects collagen metabolism in fish.Aquat. Toxicol.2023,257, 106452..
Fang, Y.; Yu, Y.; Jiang, X.; Liu, P.; Chen, Y.; Feng, W. Self-adaptive MoO3− xsubnanometric wires incorporated scaffolds for osteosarcoma therapy and bone regeneration.Adv. Funct. Mater.2023,33, 2304163..
Wang, Y. Q.; Ye, C.; Zhu, Z. H.; Hu, Y. Z. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination.Anal. Chim. Acta2008,610, 50−56..
0
浏览量
62
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构