Duan, M. Y.; Chen, J. D.; Liu, Y. M.; Peng, Z. F.; Chen, G. Swelling of spherical polyelectrolyte gels. Chinese J. Polym. Sci. 2024, 42, 1386–1392
Ming-Yu Duan, Jia-Dong Chen, Yi-Ming Liu, et al. Swelling of Spherical Polyelectrolyte Gels[J]. Chinese Journal of Polymer Science, 2024,42(9):1386-1392.
Duan, M. Y.; Chen, J. D.; Liu, Y. M.; Peng, Z. F.; Chen, G. Swelling of spherical polyelectrolyte gels. Chinese J. Polym. Sci. 2024, 42, 1386–1392 DOI: 10.1007/s10118-024-3152-2.
Ming-Yu Duan, Jia-Dong Chen, Yi-Ming Liu, et al. Swelling of Spherical Polyelectrolyte Gels[J]. Chinese Journal of Polymer Science, 2024,42(9):1386-1392. DOI: 10.1007/s10118-024-3152-2.
We develop a new theory to understand the swelling behavior of spherical polyelectrolyte gels with added salt. Our model reveals two scaling regimes for the swelling ratio
which agrees with experiments. We anticipate that this work will shed light on multiple applications of polyelectrolyte gels in biomedicine and advanced manufacturing.
Abstract
Polyelectrolyte (PE) gels
distinguished by their unique stimuli-responsive swelling behavior
serve as the basis of broad applications
such as artificial muscles and drug delivery. In this work
we present a theoretical model to analyze the electrostatics and its contribution to the swelling behavior of PE gels in salt solutions. By minimizing the free energy of PE gels
we obtain two distinct scaling regimes for the swelling ratio at equilibrium with respect to the salt concentration. We compare our predictions for the swelling ratio with experimental measurements
which show excellent agreement. In addition
we employ a finite element method to assess the applicability range of our theoretical model and assumptions. We anticipate that our model will also provide valuable insights into drug adsorption and release
deformation of red blood cells
4D printing and soft robotics
where the underlying mechanism of swelling remains enigmatic.
关键词
Keywords
GelsPolyelectrolytesSwellingStimuli-responsiveElectrostatic interactionCell model
references
Kwon, H. J.; Osada, Y.; Gong, J. P. Polyelectrolyte gels: fundamentals and applications.Polym. J.2006,38, 1211−1219..
Ahn, S. K.; Kasi, R. M.; Kim, S. C.; Sharma, N.; Zhou, Y. Stimuli-responsive polymer gels.Soft Matter2008,4, 1151−1157..
White, E. M.; Yatvin, J.; Grubbs, J. B.; Bilbrey, J. A.; Locklin, J. Advances in smart materials: Stimuli-responsive hydrogel thin films.J. Polym. Sci., Part B: Polym. Phys.2013,51, 1084−1099..
Mirvakili, S. M.; Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges.Adv. Mater.2018,30, 1704407..
Park, N.; Kim, J. Hydrogel-based artificial muscles: overview and recent progress.Adv. Intell. Syst.2020,2, 1900135..
Lin, W. C.; Yu, D. G.; Yang, M. C. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties.Colloids Surf. B2005,44, 143−151..
Cazorla-Luna, R.; Martin-Illana, A.; Notario-Perez, F.; Ruiz-Caro, R.; Veiga, M. D. Naturally occurring polyelectrolytes and their use for the development of complex-based mucoadhesive drug delivery systems: An overview.Polymers2021,13, 2241..
Champeau, M.; Heinze, D. A.; Viana, T. N.; de Souza, E. R.; Chinellato, A. C.; Titotto, S. 4D printing of hydrogels: a review.Adv. Funct. Mater.2020,30, 1910606..
Zolfagharian, A.; Denk, M.; Bodaghi, M.; Kouzani, A. Z.; Kaynak, A. Topology-optimized 4D printing of a soft actuator.Acta Mech. Solida Sin.2020,33, 418−430..
Flory, P. J.; Rehner, J. Statistical mechanics of cross-linked polymer networks i. Rubberlike elasticity.J. Chem. Phys.1943,11, 512−520..
Flory, P. J.; Rehner, J. Statistical mechanics of cross-linked polymer networks ii. Swelling.J. Chem. Phys.1943,11, 521−526..
Tanaka, T. Collapse of gels and the critical endpoint.Phys. Rev. Lett.1978,40, 820−823..
Donnan, F. G. The theory of membrane equilibria.Chem. Rev.1924,1, 73−90..
Flory, P. J.Principles of polymer chemistry. Cornell university press: USA, 1953, p. 584..
Ohmine, I.; Tanaka, T. Salt effects on the phase transition of ionic gels.J. Chem. Phys.1982,77, 5725−5729..
Ricka, J.; Tanaka, T. Swelling of ionic gels: quantitative performance of the donnan theory.Macromolecules1984,17, 2916−2921..
Skouri, R.; Schosseler, F.; Munch, J. P.; Candau, S. J. Swelling and elastic properties of polyelectrolyte gels.Macromolecules1995,28, 197−210..
Rubinstein, M.; Colby, R. H.; Dobrynin, A. V.; Joanny, J. F. Elastic modulus and equilibrium swelling of polyelectrolyte gels.Macromolecules1996,29, 398−406..
Hong, W.; Zhao, X.; Suo, Z. Large deformation and electrochemistry of polyelectrolyte gels.J. Mech. Phys. Solids2010,58, 558−577..
Hua, J.; Mitra, M. K.; Muthukumar, M. Theory of volume transition in polyelectrolyte gels with charge regularization.J. Chem. Phys.2012,136, 134901..
Jia, D.; Muthukumar, M. Interplay between microscopic and macroscopic properties of charged hydrogels.Macromolecules2020,53, 90−101..
Jia, D.; Muthukumar, M. Theory of charged gels: Swelling, elasticity, and dynamics.Gels2021,7, 49..
Doi, M.Soft matter physics. Oxford University Press: USA, 2013 p 38..
Tang, J.; Katashima, T.; Li, X.; Mitsukami, Y.; Yokoyama, Y.; Chung, U. I.; Shibayama, M.; Sakai, T. Effect of nonlinear elasticity on the swelling behaviors of highly swollen polyelectrolyte gels.Gels2021,7, 25..
Chen, G.; Perazzo, A.; Stone, H. A. Influence of salt on the viscosity of polyelectrolyte solutions.Phys. Rev. Lett.2020,124, 177801..
Chen, G.; Perazzo, A.; Stone, H. A. Electrostatics, conformation, and rheology of unentangled semidilute polyelectrolyte solutions.J. Rheol.2021,65, 507−526..
MATLABversion 9.13.0 (R2022b), The MathWorks Inc., Natick, Massachusetts, United States.
Duan, M.; Chen, G. Swelling and shrinking of two opposing polyelectrolyte brushes.Phys. Rev. E2023,107, 024502..
COMSOL Multiphysicsversion 6.1, COMSOL AB, Stockholm, Sweden.
Polyelectrolyte Complexes and Coacervates Formed by De novo-Designed Peptides and Oligonucleotide
Density-Functional Theories for Polyelectrolyte Systems
相关作者
Tian-Hao Ren
De-Hai Liang
Jia-Wei Zhang
Yu-Hang Zhang
Bao-Hui Li
Qiang Wang
Zhi-Yong Yang
Wen-Long Lin
相关机构
Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University
Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery
School of Physics, Nankai University
Department of Physics, Jiangxi Agricultural University