a.Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
b.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
jbzeng@swu.edu.cn
纸质出版日期:2024-10-01,
网络出版日期:2024-05-17,
收稿日期:2024-02-24,
修回日期:2024-03-23,
录用日期:2024-03-25
Scan QR Code
Wu, S. S.; Lu, H. J.; Li, Y. D.; Zhang, S. D.; Zeng, J. B. Unlocking the potential of poly(butylene succinate) through incorporation of vitrimeric network based on dynamic imine bonds. Chinese J. Polym. Sci. 2024, 42, 1414–1424
Shan-Song Wu, Hui-Juan Lu, Yi-Dong Li, et al. Unlocking the Potential of Poly(butylene succinate) through Incorporation of Vitrimeric Network Based on Dynamic Imine Bonds[J]. Chinese Journal of Polymer Science, 2024,42(10):1414-1424.
Wu, S. S.; Lu, H. J.; Li, Y. D.; Zhang, S. D.; Zeng, J. B. Unlocking the potential of poly(butylene succinate) through incorporation of vitrimeric network based on dynamic imine bonds. Chinese J. Polym. Sci. 2024, 42, 1414–1424 DOI: 10.1007/s10118-024-3132-6.
Shan-Song Wu, Hui-Juan Lu, Yi-Dong Li, et al. Unlocking the Potential of Poly(butylene succinate) through Incorporation of Vitrimeric Network Based on Dynamic Imine Bonds[J]. Chinese Journal of Polymer Science, 2024,42(10):1414-1424. DOI: 10.1007/s10118-024-3132-6.
Melt strength
melt viscosity
and foamability of poly(butylene succinate) were improved sustantially by incorporation of vitrimeric network into poly(butylene succinate) through melt polymerization of hydroxyl-terminated poly(butylene succinate) with vanillin derived imine containing compound and hexamethylene diisocyanate using trimethylolpropane as a crosslinking monomer.
Poly(butylene succinate) (PBS) exhibits many advantages
such as renewability
biodegradability
and impressive thermal and mechanical properties
but is limited by the low melt viscosity and strength resulted from the linear structure. To address this
vitrimeric network was introduced to synthesize PBS vitrimers (PBSVs) based on dynamic imine bonds through melt polymerization of hydroxyl-terminated PBS with vanillin derived imine containing compound and hexamethylene diisocyanate using trimethylolpropane as a crosslinking monomer. PBSVs with different crosslinking degrees were synthesized through changing the content of the crosslinking monomer. The effect of crosslinking degree on the thermal
theological
mechanical properties
and stress relaxation behavior of the PBSVs was studied in detail. The results demonstrated that the melt viscosity
melt strength
and heat resistance were enhanced substantially without obvious depression in crystallizability
thermal stability
and mechanical properties through increasing crosslinking degree. In addition
the PBSVs exhibit thermal reprocessability with mechanical properties recovered by more than 90% even after processing for three times. Furthermore
PBSV with improved melt properties shows significantly improved foamability compared to commercial PBS. This research contributes to the advancement of polymer technology by successfully developing PBS vitrimers with improved properties
showcasing their potential applications in sustainable and biodegradable materials.
Poly(butylene succinate)VitrimerImine bondsFoamability
Xu, J.; Guo, B. H. Poly(butylene succinate) and its copolymers: research, development and industrialization.Biotechnol. J.2010,5, 1149−1163..
Rafiqah, S. A.; Khalina, A.; Harmaen, A. S.; Tawakkal, I. A.; Zaman, K.; Asim, M.; Nurrazi, M. N.; Lee, C. H. A Review on properties and application of bio-based poly(butylene succinate).Polymers2021,13, 13091436..
Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H. Poly(butylene succinate) (PBS): materials, processing, and industrial applications.Prog. Polym. Sci.2022,132, 101579..
Tachibana, Y.; Masuda, T.; Funabashi, M.; Kunioka, M. Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio.Biomacromolecules2010,11, 2760−2765..
Bechthold, I.; Bretz, K.; Kabasci, S.; Kopitzky, R.; Springer, A. Succinic acid: a new platform chemical for biobased polymers from renewable resources.Chem. Eng. Technol.2008,31, 647−654..
Meyer Cifuentes, I. E.; Degenhardt, J.; Neumann-Schaal, M.; Jehmlich, N.; Ngugi, D. K.; Oeztuerk, B. Comparative biodegradation analysis of three compostable polyesters by a marine microbial community.Appl. Environ. Microbiol.2023,89, e01060−23..
Rajgond, V.; Mohite, A.; More, N.; More, A. Biodegradable polyester-polybutylene succinate (PBS): a review.Polym. Bull. 2023 , https://doi.org/10.1007/s00289-023-04998-w..
Suzuki, M.; Tachibana, Y.; Soulenthone, P.; Suzuki, T.; Takeno, H.; Kasuya, K.-I. Control of marine biodegradation of an aliphatic polyester using endospores.Polym. Degrad. Stabil.2023,215, 110466..
Nabels-Sneiders, M.; Barkane, A.; Platnieks, O.; Orlova, L.; Gaidukovs, S. Biodegradable poly(butylene succinate) laminate with nanocellulose interphase layer for high-barrier packaging film application.Foods2023,12, 4136..
Nansu, W.; Ross, S.; Waisarikit, A.; Ross, G. M.; Charoensit, P.; Suphrom, N.; Mahasaranon, S. Exploring the potential of poselle calyx and sappan heartwood extracts as natural colorants in poly(butylene succinate) for biodegradable packaging films.Polymers2023,15, 15204193..
Wu, C. S.; Wang, S. S.; Wu, D. Y. Three-dimensionally printed scaffolds of crab shell-derived calcium hydroxide, beef bone-derived hydroxyapatite, and poly(butylene succinate) composites.ACS Appl. Polym. Mater.2023,5, 3416−3426..
Mtibe, A.; Muniyasamy, S.; Mokhena, T. C.; Ofosu, O.; Ojijo, V.; John, M. Recent insight into the biomedical applications of polybutylene succinate and polybutylene succinate-based materials.Exp. Polym. Lett.2023,17, 2−28..
Shinozaki, Y.; Morita, T.; Cao, X.-h.; Yoshida, S.; Koitabashi, M.; Watanabe, T.; Suzuki, K.; Sameshima-Yamashita, Y.; Nakajima-Kambe, T.; Fujii, T.; Kitamoto, H. K. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization.Appl. Microbiol. Biotechnol.2013,97, 2951−2959..
Ilangovan, M.; Gan, H.; Kabe, T.; Iwata, T. Bio-based polymer blend with tunable properties developed from paramylon hexanoate and poly(butylene succinate).Polymer2023,270, 125791..
Dybka-Stepien, K.; Antolak, H.; Kmiotek, M.; Piechota, D.; Kozirog, A. Disposable food packaging and serving materials-trends and biodegradability.Polymers2021,13, 13203606..
Vandesteene, M.; Jacquel, N.; Saint-Loup, R.; Boucard, N.; Carrot, C.; Rousseau, A.; Fenouillot, F. Synthesis of branched poly(butylene succinate): Structure properties relationship.Chinese J. Polym. Sci.2016,34, 873−888..
Zhou, H.; Hu, D.; Zhu, M.; Xue, K.; Wei, X.; Park, C. B.; Wang, X.; Zhao, L. Review on poly(butylene succinate) foams: modifications, foaming behaviors and applications.Sustain. Mater. Technol.2023,38, e00720..
Zhou, H.; Wang, X.; Du, Z.; Li, H.; Yu, K. Preparation and characterization of chain extended poly(butylene succinate) foams.Polym. Eng. Sci.2015,55, 988−994..
Luo, S.; Li, F.; Yu, J. The thermal, mechanical and viscoelastic properties of poly(butylene succinate-co-terephthalate) (PBST) copolyesters with high content of BT units.J. Polym. Res.2011,18, 393−400..
Yousfi, M.; Samuel, C.; Dadouche, T.; Mincheva, R.; Lacrampe, M. F. Long-chain branched poly(butylene succinate-co-terephthalate) copolyesters: impact of (reactive) synthesis strategies on melt strength properties.Exp. Polym. Lett.2023,17, 300−316..
Wang, G.; Gao, B.; Ye, H.; Xu, J.; Guo, B. Synthesis and characterizations of branched poly(butylene succinate) copolymers with 1,2-octanediol segments.J. Appl. Polym. Sci.2010,117, 2538−2544..
Qiu, S.; Zhang, K.; Su, Z.; Qiu, Z. Thermal behavior, mechanical and rheological properties, and hydrolytic degradation of novel branched biodegradable poly(ethylene succinate) copolymers.Polym. Test.2018,66, 64−69..
Zhang, K.; Jiang, Z.; Qiu, Z. Effect of different lengths of side groups on the thermal, crystallization and mechanical properties of novel biodegradable poly(ethylene succinate) copolymers.Polym. Degrad. Stabil.2021,187, 109542..
Zhou, X. M.; Liu, Y. F. Preparation and properties of high melt strength PBS and its environmentally friendly foaming materials.Cell. Polym.2022,41, 30−38..
Boonprasertpoh, A.; Pentrakoon, D.; Junkasem, J. Effect of crosslinking agent and branching agent on morphological and physical properties of poly(butylene succinate) foams.Cell. Polym.2017,36, 333−354..
Chen, P.; Zhao, L.; Gao, X.; Xu, Z.; Liu, Z.; Hu, D. Engineering of polybutylene succinate with long-chain branchingtoward high foamability and degradation.Polym. Degrad. Stab.2021,194, 109745..
Wang, G.; Guo, B.; Li, R. Synthesis, characterization, and properties of long-chain branched poly(butylene succinate).J. Appl. Polym. Sci.2012,124, 1271−1280..
Kloxin, C. J.; Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems.Chem. Soc. Rev.2013,42, 7161−7173..
Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity.Chem. Sci.2016,7, 30−38..
Zhang, Y.; Dai, Z.; Han, J.; Li, T.; Xu, J.; Guo, B. Interplay between crystallization and the Diels-Alder reaction in biobased multiblock copolyesters possessing dynamic covalent bonds.Polym. Chem.2017,8, 4280−4289..
Chen, X.; Dam, M. A.; Kanji Ono, A. M.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A Thermally re-mendable cross-linked polymeric material.Science2002,295, 1698−1702..
Krishnakumar, B.; Sanka, R. V. S. P.; Binder, W. H.; Parthasarthy, V.; Rana, S.; Karak, N. Vitrimers: associative dynamic covalent adaptive networks in thermoset polymers.Chem. Eng. J.2020,385, 123820..
Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks.Science2011,334, 965−968..
Wu, S. S.; Li, Y. D.; Hu, Z.; Zeng, J. B. Fast upcycling of poly(ethylene terephthalate) into catalyst-free vitrimers.ACS Sustainable Chem. Eng.2023,11, 1974−1984..
Qiu, J.; Ma, S.; Wang, S.; Tang, Z.; Li, Q.; Tian, A.; Xu, X.; Wang, B.; Lu, N.; Zhu, J. Upcycling of polyethylene terephthalate to continuously reprocessable vitrimers through reactive extrusion.Macromolecules2021,54, 703−712..
Zhou, Y.; Goossens, J. G. P.; Sijbesma, R. P.; Heuts, J. P. A. Poly(butylene terephthalate)/glycerol-based vitrimers via solid-state polymerization.Macromolecules2017,50, 6742−6751..
Demongeot, A.; Groote, R.; Goossens, H.; Hoeks, T.; Tournilhac, F.; Leibler, L. Cross-linking of poly(butylene terephthalate) by reactive extrusion using Zn(II) epoxy-vitrimer chemistry.Macromolecules2017,50, 6117−6127..
Liu, Y. B.; Xu, Z.; Zhang, Z. M.; Bao, R. Y.; Yang, M. B.; Yang, W. Blowing tough polylactide film enabled by thein situconstruction of covalent adaptive networks with epoxidized soybean oil as dynamic crosslinks.Green Chem.2023,25, 5182−5194..
Liu, Y. B.; Peng, L. M.; Bao, R. Y.; Yang, M. B.; Yang, W. Vitrimeric polylactide by two-step alcoholysis and transesterification during reactive processing for enhanced melt strength.ACS Appl. Mater. Interfaces2022,14, 45966−45977..
Yin, Y.; Yang, J.; Meng, L. Preparation of poly(butylene succinate) vitrimer with thermal shape stabilityviatransesterification reaction.J. Appl. Polym. Sci.2021,138, e51010..
Abe, H.; Takahashi, N.; Kim, K. J.; Mochizuki, M.; Doi, Y. Thermal degradation processes of end-capped poly(L-lactide)s in the presence and absence of residual zinc catalyst.Biomacromolecules 2004, 5, 1606-1614..
Abe, H.; Takahashi, N.; Kim, K. J.; Mochizuki, M.; Doi, Y. Effects of residual zinc compounds and chain-end structure on thermal degradation of poly(ε-caprolactone).Biomacromolecules 2004, 5, 1480-1488..
Zheng, J.; Png, Z.M.; Ng, S. H.; Tham, G. X.; Ye, E.; Goh, S. S.; Loh, X. J.; Li, Z. Vitrimers: current research trends and their emerging applications.Mater. Today2021,51, 586−625..
Zhao, X. L.; Tian, P. X.; Li, Y. D.; Zeng, J. B. Biobased covalent adaptable networks: towards better sustainability of thermosets.Green Chem.2022,24, 4363−4387..
Zhao, X. L.; Li, Y. D.; Zeng, J. B. Progress in the design and synthesis of biobased epoxy covalent adaptable networks.Polym. Chem.2022,48, 6573−6588..
Zhao, X. L.; Liu, Y. Y.; Weng, Y.; Li, Y. D.; Zeng, J. B. Sustainable epoxy vitrimers from epoxidized soybean oil and vanillin.ACS Sustainable Chem. Eng.2020,8, 15020−15029..
Memon, H.; Liu, H.; Rashid, M. A.; Chen, L.; Jiang, Q.; Zhang, L.; Wei, Y.; Liu, W.; Qiu, Y. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability.Macromolecules2020,53, 621−630..
Zhao, S.; Abu-Omar, M. M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds.Macromolecules2018,51, 9816−9824..
Liu, Y. Y.; Liu, G. L.; Li, Y. D.; Weng, Y.; Zeng, J. B. Biobased high-performance epoxy vitrimer with UV shielding for recyclable carbon fiber reinforced composites.ACS Sustainable Chem. Eng.2021,9, 4638−4647..
Ding, X. M.; Chen, L.; Xu, Y. J.; Shi, X. H.; Luo, X.; Song, X.; Wang, Y. Z. Robust epoxy vitrimer with simultaneous ultrahigh impact property, fire safety, and multipath recyclabilityviarigid-flexible imine networks.ACS Sustainable Chem. Eng.2023,11, 14445−14456..
Zhao, X. L.; Zhang, Z. W.; Li, Y. D.; Du, A. K.; Wu, Y.; Zeng, J. B. Topological manipulation of fully biobased poly(epoxy imine): from thermoplastic elastomers to covalent adaptable networks and permanently cross-linked networks.ACS Sustainable Chem. Eng.2023,11, 9846−9857..
Zhao, C. B.; Feng, L. K.; Xie, H.; Wang, M. L.; Guo, B.; Xue, Z. Y.; Zhu, C. Z.; Xu, J. High-performance recyclable furan-based epoxy resin and its carbon fiber composites with dense hydrogen bonding.Chinese J. Polym. Sci.2023,42, 73−86..
Liu, Y.; Wu, M. L.; Li, Y. D.; Li, L. Y.; Zeng, J. B. Fully biobased and mechanically robust elastomeric vitrimer based on epoxidized natural rubber and dynamic imine bonds.ACS Sustainable Chem. Eng.2023,11, 17190−17198..
Zeng, J. B.; Zhu, Q. Y.; Lu, X.; He, Y. S.; Wang, Y. Z. From miscible to partially miscible biodegradable double crystalline poly (ethylene succinate)-b-poly(butylene succinate) multiblock copolymers.Polym. Chem.2012,3, 399−408..
Xie, D. M.; Lu, D. X.; Zhao, X. L.; Li, Y. D.; Zeng, J. B. Sustainable and malleable polyurethane networks from castor oil and vanillin with tunable mechanical properties.Ind. Crop. Prod.2021,174, 114198..
Liu, G. C.; Zhang, W. Q.; Zhou, S. L.; Wang, X. L.; Wang, Y. Z. Improving crystallization and processability of PBSviaslight cross-linking.RSC Adv.2016,6, 68942−68951..
Si, W. J.; An, X. P.; Zeng, J. B.; Chen, Y. K.; Wang, Y. Z. Fully bio-based, highly toughened and heat-resistant poly(L-lactide) ternary blendsviadynamic vulcanization with poly(D-lactide) and unsaturated bioelastomer.Sci. China Mater.2017,60, 1008−1022..
Si, W. J.; Yang, L.; Zhu, J.; Li, Y. D.; Zeng, J. B. Highly toughened and heat-resistant poly(L-lactide) materials through interfacial interaction controlviachemical structure of biodegradable elastomer.Appl. Surf. Sci.2019,483, 1090−1100..
van Melick, H. G. H.; Govaert, L. E.; Meijer, H. E. H. On the origin of strain hardening in glassy polymers.Polymer2003,44, 2493−2502..
Zhang, X. H.; Yang, H. M.; Song, Y. H.; Zheng, Q. Influence of crosslinking on physical properties of low density polyethylene.Chinese J. Polym. Sci.2012,30, 837−844..
Ghijsels, A.; Clippeleir, J. D., Melt strengthbehaviour of polypropylenes.Int. Polym. Proc. 1994, 9, 252-257..
Xu, Y.; Zhang, S.; Peng, X.; Wang, J. Fabrication and mechanism of poly(butylene succinate) urethane ionomer microcellular foams with high thermal insulation and compressive feature.Eur. Polym. J.2018,99, 250−258..
0
浏览量
64
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构