National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
chunlair@nju.edu.cn
纸质出版日期:2024-09-01,
网络出版日期:2024-03-29,
收稿日期:2024-01-23,
修回日期:2024-02-09,
录用日期:2024-02-19
Scan for full text
Qiao, Y. P.; Ren, C. L. Supercoiled DNA minicircles under double-strand breaks. Chinese J. Polym. Sci. 2024, 42, 1353–1359
Ye-Peng Qiao, Chun-Lai Ren. Supercoiled DNA Minicircles under Double-strand Breaks[J]. Chinese Journal of Polymer Science, 2024,42(9):1353-1359.
Qiao, Y. P.; Ren, C. L. Supercoiled DNA minicircles under double-strand breaks. Chinese J. Polym. Sci. 2024, 42, 1353–1359 DOI: 10.1007/s10118-024-3106-8.
Ye-Peng Qiao, Chun-Lai Ren. Supercoiled DNA Minicircles under Double-strand Breaks[J]. Chinese Journal of Polymer Science, 2024,42(9):1353-1359. DOI: 10.1007/s10118-024-3106-8.
Understanding how supercoiled DNA releases intramolecular stress is essential for its functional realization. We employed MD simulations based on the oxDNA2 model to investigate the dynamics of supercoiled minicircular DNA under double-strand breaks with two fixed endpoints
uncovering the molecular mechanism underlying the relaxation process.
Understanding how supercoiled DNA releases intramolecular stress is essential for its functional realization. However
the molecular mechanism underlying the relaxation process remains insufficiently explored. Here we employed MD simulations based on the oxDNA2 model to investigate the relaxation process of a 336-base pair supercoiled minicircular DNA under double-strand breaks with two fixed endpoints. Our simulations show that the conformational changes in the DNA occur continuously
with intramolecular stress release happening abruptly only when the DNA chain traverses the breakage site. The relaxation process is influenced not only by the separation distance between the fixed ends but also their angle. Importantly
we observe an inhibitory effect on the relaxation characterized by small angles
where short terminal loops impede DNA conformational adjustments
preserving the supercoiled structure. These findings elucidate the intricate interplay between DNA conformational change
DNA motion and intramolecular stress release
shedding light on the mechanisms governing the relaxation of supercoiled DNA at the molecular level.
Supercoiled DNADNA minicircleDNA relaxationoxDNA modelMD simulation
Forth, S.; Sheinin, M. Y.; Inman, J.; Wang, M. D. Torque measurement at the single-molecule level.Annu. Rev. Biophys.2013,42, 583−604..
Kouzine, F.; Levens, D. The texture of chromatin.Cell2019,179, 579−581..
Ma, J.; Wang, M. D. DNA supercoiling during transcription.Biophys. Rev.2016,8, 75−87..
Dunaway, M.; Ostrander, E. A. Local domains of supercoiling activate a eukaryotic promoterin vivo. Nature 1993, 361, 746-748..
Ding, Y.; Manzo, C.; Fulcrand, G.; Leng, F.; Dunlap, D.; Finzi, L. DNA supercoiling: a regulatory signal for the lambda repressor.Proc. Natl. Acad. Sci. U. S. A.2014,111, 15402−7..
Wang, G.; Vasquez, K. M. Effects of replication and transcription on DNA structure-related genetic instability.Genes2017,8, 17..
Sheinin, M. Y.; Forth, S.; Marko, J. F.; Wang, M. D. Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors.Phys. Rev. Lett.2011,107, 108102..
Seol, Y.; Neuman, K. C. The dynamic interplay between DNA topoisomerases and DNA topology.Biophys. Rev.2016,8, 101−111..
Bates, A. D.; Maxwell, A.DNA Topology. Oxford University Press: New York, USA, 2005 ..
Schvartzman, J. B.; Hernandez, P.; Krimer, D. B.; Dorier, J.; Stasiak, A. Closing the DNA replication cycle: from simple circular molecules to supercoiled and knotted DNA catenanes.Nucleic Acids Res.2019,47, 7182−7198..
Berger, J. M.; Gamblin, S. J.; Harrison, S. C.; Wang, J. C. Structure and mechanism of DNA topoisomerase II.Nature1996,379, 225−232..
Deweese, J. E.; Osheroff, N. The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing.Nucleic Acids Res.2008,37, 738−748..
Bates, A. D.; Noy, A.; Piperakis, M. M.; Harris, S. A.; Maxwell, A. Small DNA circles as probes of DNA topology.Biochem. Soc. Trans.2013,41, 565−570..
Gaspar, V. M.; Maia, C. J.; Queiroz, J. A.; Pichon, C.; Correia, I. J.; Sousa, F. Improved minicircle DNA biosynthesis for gene therapy applications.Hum. Gene Ther: Methods.2014,25, 93−105..
Crut, A.; Koster, D. A.; Seidel, R.; Wiggins, C. H.; Dekker, N. H. Fast dynamics of supercoiled DNA revealed by single-molecule experiments.Proc. Natl. Acad. Sci. U. S. A.2007,104, 11957−11962..
Galburt, E. A.; Tomko, E. J.; Stump, W. T.; Ruiz Manzano, A. Force-dependent melting of supercoiled DNA at thermophilic temperatures.Biophys. Chem.2014,187−188, 23−28..
Qiao, Y. P.; Ren, C. L.; Ma, Y. Q. Two different ways of stress release in supercoiled DNA minicircles under DNA nick.J. Phys. Chem. B2023,127, 4015−4021..
Ouldridge, T. E.; Louis, A. A.; Doye, J. P. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model.J. Chem. Phys.2011,134, 085101..
Sulc, P.; Romano, F.; Ouldridge, T. E.; Rovigatti, L.; Doye, J. P.; Louis, A. A. Sequence-dependent thermodynamics of a coarse-grained DNA model.J. Chem. Phys.2012,137, 135101..
Snodin, B. E.; Randisi, F.; Mosayebi, M.; Sulc, P.; Schreck, J. S.; Romano, F.; Ouldridge, T. E.; Tsukanov, R.; Nir, E.; Louis, A. A.; Doye, J. P. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA.J. Chem. Phys.2015,142, 234901..
Mosayebi, M.; Romano, F.; Ouldridge, T. E.; Louis, A. A.; Doye, J. P. The role of loop stacking in the dynamics of DNA hairpin formation.J. Phys. Chem. B2014,118, 14326−14335..
Li, L.; Wang, H.; Xiong, C.; Luo, D.; Chen, H.; Liu, Y. Quantify the combined effects of temperature and force on the stability of DNA hairpin.J. Phys.: Condens. Matter2021,33, 185102..
Schreck, J. S.; Ouldridge, T. E.; Romano, F.; Sulc, P.; Shaw, L. P.; Louis, A. A.; Doye, J. P. DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization.Nucleic Acids Res.2015,43, 6181−6190..
Matek, C.; Ouldridge, T. E.; Doye, J. P.; Louis, A. A. Plectoneme tip bubbles: coupled denaturation and writhing in supercoiled DNA.Sci. Rep.2015,5, 7655..
Coronel, L.; Suma, A.; Micheletti, C. Dynamics of supercoiled DNA with complex knots: large-scale rearrangements and persistent multi-strand interlocking.Nucleic Acids Res.2018,46, 7533−7541..
Kriegel, F.; Matek, C.; Drsata, T.; Kulenkampff, K.; Tschirpke, S.; Zacharias, M.; Lankas, F.; Lipfert, J. The temperature dependence of the helical twist of DNA.Nucleic Acids Res.2018,46, 7998−8009..
Desai, P. R.; Brahmachari, S.; Marko, J. F.; Das, S.; Neuman, K. C. Coarse-grained modelling of DNA plectoneme pinning in the presence of base-pair mismatches.Nucleic Acids Res.2020,48, 10713−10725..
Skoruppa, E.; Nomidis, S. K.; Marko, J. F.; Carlon, E. Bend-induced twist waves and the structure of nucleosomal DNA.Phys. Rev. Lett.2018,121, 088101..
Caraglio, M.; Skoruppa, E.; Carlon, E. Overtwisting induces polygonal shapes in bent DNA.J. Chem. Phys.2019,150, 135101..
Gutierrez Fosado, Y. A.; Landuzzi, F.; Sakaue, T. Twist dynamics and buckling instability of ring DNA: the effect of groove asymmetry and anisotropic bending.Soft Matter2021,17, 1530−1537..
Lim, W.; Randisi, F.; Doye, J. P. K.; Louis, A. A. The interplay of supercoiling and thymine dimers in DNA.Nucleic Acids Res.2022,50, 2480−2492..
Benson, E.; Lolaico, M.; Tarasov, Y.; Gadin, A.; Hogberg, B. Evolutionary refinement of DNA nanostructures using coarse-grained molecular dynamics simulations.ACS Nano2019,13, 12591−12598..
Schreck, J. S.; Romano, F.; Zimmer, M. H.; Louis, A. A.; Doye, J. P. Characterizing DNA star-tile-based nanostructures using a coarse-grained model.ACS Nano2016,10, 4236−4247..
Sharma, R.; Schreck, J. S.; Romano, F.; Louis, A. A.; Doye, J. P. K. Characterizing the motion of jointed DNA nanostructures using a coarse-grained model.ACS Nano2017,11, 12426−12435..
Chhabra, H.; Mishra, G.; Cao, Y.; Presern, D.; Skoruppa, E.; Tortora, M. M. C.; Doye, J. P. K. Computing the elastic mechanical properties of rodlike DNA nanostructures.J. Chem. Theory Comput.2020,16, 7748−7763..
Reinhardt, A.; Schreck, J. S.; Romano, F.; Doye, J. P. Self-assembly of two-dimensional binary quasicrystals: a possible route to a DNA quasicrystal.J. Phys.: Condens. Matter2017,29, 014006..
Naskar, S.; Maiti, P. K. Mechanical properties of DNA and DNA nanostructures: comparison of atomistic, Martini and oxDNA models.J. Mater. Chem. B2021,9, 5102−5113..
Ouldridge, T. E. DNA nanotechnology: understanding and optimisation through simulation.Mol. Phys.2014,113, 1−15..
Doye, J. P.; Ouldridge, T. E.; Louis, A. A.; Romano, F.; Sulc, P.; Matek, C.; Snodin, B. E.; Rovigatti, L.; Schreck, J. S.; Harrison, R. M.; Smith, W. P. Coarse-graining DNA for simulations of DNA nanotechnology.Phys. Chem. Chem. Phys.2013,15, 20395−20414..
Plimpton., S. Fast parallel algorithms for short-range molecular dynamics.J. Comput. Phys.1995,117, 1−19..
Henrich, O.; Gutierrez Fosado, Y. A.; Curk, T.; Ouldridge, T. E. Coarse-grained simulation of DNA using LAMMPS: an implementation of the oxDNA model and its applications.Eur. Phys. J. E: Soft Matter Biol. Phys.2018,41, 57..
Sengar, A.; Ouldridge, T. E.; Henrich, O.; Rovigatti, L.; Sulc, P. A Primer on the oxDNA model of DNA: when to use it, how to simulate it and how to interpret the results.Front. Mol. Biosci.2021,8, 693710..
Davidchack, R. L.; Ouldridge, T. E.; Tretyakov, M. V. New Langevin and gradient thermostats for rigid body dynamics.J. Chem. Phys.2015,142, 144114..
Sayar, M.; Avsaroglu, B.; Kabakcioglu, A. Twist-writhe partitioning in a coarse-grained DNA minicircle model.Phys. Rev. E2010,81, 041916..
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool.Modell. Simul. Mater. Sci. Eng.2010,18, 015012..
Koster, D. A.; Croquette, V.; Dekker, C.; Shuman, S.; Dekker, N. H. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB.Nature2005,434, 671−674..
Strick, T. R.; Croquette, V.; Bensimon, D. Single-molecule analysis of DNA uncoiling by type II topoisomerase.Nature2000,404, 901−904..
Spakman, D.; Bakx, J. A. M.; Biebricher, A. S.; Peterman, E. J. G.; Wuite, G. J. L.; King, G. A. Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches.Nucleic Acids Res.2021,49, 5470−5492..
Fathizadeh, A.; Schiessel, H.; Ejtehadi, M. R. Molecular dynamics simulation of supercoiled DNA rings.Macromolecules2014,48, 164−172..
0
浏览量
86
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构