a.College of Chemistry & Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
b.National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
c.Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
jun.shao@jxnu.edu.cn (J.S.)
hhq2001911@126.com (H.Q.H.)
xiangsheng@ucas.ac.cn (S.X.)
纸质出版日期:2024-6-1,
网络出版日期:2024-3-7,
收稿日期:2023-12-1,
修回日期:2024-2-4,
录用日期:2024-2-4
Scan for full text
Li, S. C.; Zhou, W. J.; Wu, W. J.; Shao, J.; Chen, S. L.; Hou, H. Q.; Xiang, S. The crystallization behavior of L-poly(lactic acid)/polypropylene blends: the acceleration for both L-poly(lactic acid) and polypropylene. Chinese J. Polym. Sci. 2024, 42, 775–786
Shuang-Cheng Li, Wei-Jia Zhou, Wen-Jie Wu, et al. The Crystallization Behavior of L-Poly(lactic acid)/Polypropylene Blends: The Acceleration for Both L-Poly(lactic acid) and Polypropylene[J]. Chinese Journal of Polymer Science, 2024,42(6):775-786.
Li, S. C.; Zhou, W. J.; Wu, W. J.; Shao, J.; Chen, S. L.; Hou, H. Q.; Xiang, S. The crystallization behavior of L-poly(lactic acid)/polypropylene blends: the acceleration for both L-poly(lactic acid) and polypropylene. Chinese J. Polym. Sci. 2024, 42, 775–786 DOI: 10.1007/s10118-024-3104-x.
Shuang-Cheng Li, Wei-Jia Zhou, Wen-Jie Wu, et al. The Crystallization Behavior of L-Poly(lactic acid)/Polypropylene Blends: The Acceleration for Both L-Poly(lactic acid) and Polypropylene[J]. Chinese Journal of Polymer Science, 2024,42(6):775-786. DOI: 10.1007/s10118-024-3104-x.
When PLLA/PP binary blends crystallize from the melt
the crystallization rate of PP is limited
while the crystallization rate of PLLA is accelerated. When PLLA crystals are present in the co-mingled system
the crystallization rate of PP can be substantially increased.
For a polymer/polymer dismissible blend with two crystallizable components
the crystallization behavior of different components and the reciprocal influences between different crystals are interesting and important
but did not investigate in detail. In this study
the L-poly(lactic acid)/polypropylene (PLLA/PP) blends with different weight ratios were prepared by melt mixing and the crystallization behavior of the blends were investigated. Results showed that the crystalline structures of PLLA and PP were not altered by the composition. For the crystallization of PLLA
both the diffusion of chain segments and crystallization rate were enhanced under the existence of PP crystals. For the crystallization of PP
its crystallization rate was depressed under the existence of amorphous PLLA molecular chains. When the PP crystallized from the existence of PLLA crystals
although the diffusion rate of PP was reduced by PLLA crystals
the nucleation positions were obviously enhanced
which accelerated the formation of PP crystals. This investigation would supply more basic data for the application of PLLA/PP blend.
L-poly(lactic acid)PolypropyleneBlendsCrystallization behaviorCrystallization acceleration
Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications.Adv. Drug Deliv. Rev.2016,107, 163−175..
Pascual-Gonzalez, C.; Thompson, C.; de la Vega, J.; Biurrun Churruca, N.; Fernandez-Blazquez, J. P.; Lizarralde, I.; Herraez-Molinero, D.; Gonzalez, C.; LLorca, J. Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications.Rapid Prototyp. J.2022,28, 884−894..
Zhang, S.; Yan, D.; Zhao, L.; Lin, J. Composite fibrous membrane comprising PLA and PCL fibers for biomedical application.Compos. Commun.2022,34, 101268..
Miros-Kudra, P.; Gzyra-Jagieła, K.; Kudra, M. Physicochemical assessment of the biodegradability of agricultural nonwovens made of PLA.Fibres Text. East. Eur.2021,145, 26−34..
Parida, M.; Shajkumar, A.; Mohanty, S.; Biswal, M.; Nayak, S. K. Poly(lactic acid) (PLA)-based mulch films: evaluation of mechanical, thermal, barrier properties and aerobic biodegradation characteristics in real-time environment.Polym. Bull.2023,80, 3649−3674..
Zhou, X.; Yang, R.; Wang, B.; Chen, K. Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging.Carbohydr. Polym.2019,222, 114912..
Mangaraj, S.; Thakur, R. R.; Yadav, A. Development and characterization of PLA and Cassava starch-based novel biodegradable film used for food packaging application.J. Food Process. Preserv.2022,46, e16314..
Ordoñez, R.; Atarés, L.; Chiralt, A. Antibacterial properties of cinnamic and ferulic acids incorporated to starch and PLA monolayer and multilayer films.Food Control.2022,136, 108878..
Zaaba, N. F.; Jaafar, M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation.Polym. Eng. Sci.2020,60, 2061−2075..
Xiaodong, W.; Xuan, G.; Rakshit, S. Direct fermentative production of lactic acid on cassava and other starch substrates.Biotechnol. Lett.1997,19, 841−843..
Oh, H.; Wee, Y. J.; Yun, J. S.; Han, S. H.; Jung, S.; Ryu, H. W. Lactic acid production from agricultural resources as cheap raw materials.Bioresour. Technol.2005,96, 1492−1498..
Groot, W. J.; Borén, T. Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand.Int. J. Life Cycle Ass.2010,15, 970−984..
Lee, W.; Lee, J.; Chung, J. W.; Kwak, S.Y. Enhancement of tensile toughness of poly(lactic acid) (PLA) through blending of a polydecalactone-grafted cellulose copolymer: the effect of mesophase transition on mechanical properties.Int. J. Biol. Macromol.2021,193, 1103−1113..
Takayama, T.; Todo, M. Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition.J. Mater. Sci.2006,41, 4989−4992..
Takayama, T.; Todo, M.; Tsuji, H.; Arakawa, K. Effect of LTI content on impact fracture property of PLA/PCL/LTI polymer blends.J. Mater. Sci.2006,41, 6501−6504..
Arrieta, M. P.; Samper, M. D.; Aldas, M.; López, J. On the use of PLA-PHB blends for sustainable food packaging applications.Materials2017,10, 1008..
Piekarska, K.; Piorkowska, E.; Bojda, J. The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites.Polym. Test.2017,62, 203−209..
Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 3D printing of PLA-TPU with different component ratios: fracture toughness, mechanical properties, and morphology.J. Mater. Res. Technol. 2022, 21, 3970-3981..
Nofar, M.; Zhu, W.; Park, C. B.; Randall, J. Crystallization kinetics of linear and long-chain-branched polylactide.Ind. Eng. Chem. Res.2011,50, 13789−13798..
Körber, S.; Moser, K.; Diemert, J. Development of high temperature resistant stereocomplex PLA for injection moulding.Polymers2022,14, 384..
Ebadi-Dehaghani, H.; Barikani, M.; Khonakdar, H. A.; Jafari, S. H. Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites.J. Therm. Anal. Calorim.2015,121, 1321−1332..
Klonos, P. A.; Lazaridou, M.; Samiotaki, C.; Kyritsis, A.; Bikiaris, D. N. Dielectric and calorimetric study in renewable polymer blends based on poly(ethylene adipate) and poly(lactic acid) with microphase separation.Polymer2022,259, 125329..
Li, C.; Dou, Q.; Bai, Z.; Lu, Q. Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleatingagent.J. Therm. Anal. Calorim.2015,122, 407−417..
Karimi, S.; Ghasemi, I.; Abbassi-Sourki, F. A study on the crystallization kinetics of PLLA in the presence of graphene oxide and PEG-grafted-graphene oxide: effects on the nucleation and chain mobility.Compos. B Eng.2019,158, 302−310..
Prasitnok, K.; In-noi, O. Functionalized graphenes as nanofillers for polylactide: molecular dynamics simulation study.Polym. Compos.2020,41, 294−305..
Črešnar, K. P.; Klonos, P. A.; Zamboulis, A.; Terzopoulou, Z.; Xanthopoulou, E.; Papadopoulos, L.; Kyritsis, A.; Kuzmič, K.; Zemljič, L. F.; Bikiaris, D. N. Structure-Properties relationships in renewable composites based on polylactide filled with Tannin and Kraft Lignin-crystallization and molecular mobility.Thermochim. Acta2021,703, 178998..
Kudryavtseva, V. L.; Zhao, L.; Tverdokhlebov, S. I.; Sukhorukov, G. B. Fabrication of PLA/CaCO3hybrid micro-particles as carriers for water-soluble bioactive molecules.Colloids Surf. B2017,157, 481−489..
Ye, B.; Jia, C.; Li, Z.; Li, L.; Zhao, Q.; Wang, J.; Wu, H. Solution-blow spun PLA/SiO2nanofiber membranes toward high efficiency oil/water separation.J. Appl. Polym. Sci.2020,137, 49103..
Messin, T.; Marais, S.; Follain, N.; Guinault, A.; Gaucher, V.; Delpouve, N.; Sollogoub, C. Biodegradable PLA/PBS multinanolayer membrane with enhanced barrier performances.J. Membr. Sci.2020,598, 117777..
Fang, P.; Lu, X.; Zhou, Q.; Yan, D.; Xin, J.; Xu, J.; Shi, C.; Zhou, Y.; Xia, S. Controlled alcoholysis of PET to obtain oligomers for the preparation of PET-PLA copolymer.Chem. Eng. J.2023,451, 138988..
Wang, G.; Zhao, J.; Wang, G.; Zhao, H.; Lin, J.; Zhao, G.; Park, C. B. Strong and super thermally insulatingin-situnanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding.Chem. Eng. J.2020,390, 124520..
Yusoff, N. H.; Pal, K.; Narayanan, T.; de Souza, F. G. Recent trends on bioplastics synthesis and characterizations: polylactic acid (PLA) incorporated with tapioca starch for packaging applications.J. Mol. Struct.2021,1232, 129954..
Moji, R. G.; Motloung, S. V.; Motaung, T. E.; Koao, L. F. Characterization of the incorporated SiO2co-doped with Sr2+and Tb3+phosphors into PLA polymer matrix.J. Mol. Struct.2022,1263, 133176..
Choi, E. Y.; Kim, C. K.; Park, C. B. Fabrication of MA-EPDM grafted MWCNTs by reactive extrusion for enhanced interfacial adhesion and mechanical properties of PP/MA-EPDM composite.Compos. B Eng.2022,242, 110043..
Zhang, A.; Wang, Z.; Guan, Y.; Zhao, J.; Zhao, G.; Wang, G. Strong PP/PTFE microfibril reinforced composites achieved by enhanced crystallization under CO2environment.Polym. Test.2022,112, 107630..
Bai, Z.; Dou, Q. Rheology, morphology, crystallization behaviors, mechanical and thermal properties of poly(lactic acid)/polypropylene/maleic anhydride-grafted polypropylene blends.J. Polym. Environ.2017,26, 959−969..
Sui, G.; Jing, M.; Zhao, J.; Wang, K.; Zhang, Q.; Fu, Q. A comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/polylactide (PP/PLA) blends.Polymer2018,154, 119−127..
Jonoobi, M.; Harun, J.; Mathew,A. P.; Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion.Compos. Sci. Technol.2010,70, 1742−1747..
Nagarajan, V.; Mohanty, A. K.; Misra, M. Crystallization behavior and morphology of polylactic acid (PLA) with aromatic sulfonate derivative.J. Appl. Polym. Sci.2016,133, 43673..
Fatriansyah, J. F.; Surip, S. N.; Jaafar, W. N. R. W.; Phasa, A.; Uyup, M. K. A.; Suhariadi, I. Isothermal crystallization kinetics and mechanical properties of PLA/Kenaf biocomposite: comparison between alkaline treated kenaf core and bast reinforcement.Mater. Lett.2022,319, 132294..
Feng, C.; Chen, Y.; Shao, J.; Hou, H. The crystallization behavior of poly(L-lactic acid)/poly(D-lactic acid) electrospun fibers: effect of distance of isomeric polymers.Ind. Eng. Chem. Res.2020,59, 8480−8491..
Clarkson, C. M.; Azrak, S. M. E. A.; Schueneman, G. T.; Snyder, J. F.; Youngblood, J. P. Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly(lactic acid) (PLA) with plasticizer.Polymer2020,187, 122101..
Sharafi, Z. S.; Fathi, B.; Ajji, A.; Robert, M.; Elkoun, S. Phase transition and crystallization behavior of grafted starch nanocrystals in PLA nanocomposites.Express Polym. Lett.2022,16, 1253−1266..
Kang, H.; Lu, X.; Xu, Y. Properties of immiscible and ethylene-butyl acrylate-glycidyl methacrylate terpolymer compatibilized poly(lactic acid) and polypropylene blends.Polym. Test.2015,43, 173−181..
Zhang, Y. C.; Wu, H. Y.; Qiu, Y. P. Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber.Bioresour. Technol.2010,101, 7944−50..
Kaczmarek, H.; Nowicki, M.; Vuković-Kwiatkowska, I.; Nowakowska, S. Crosslinked blends of poly(lactic acid) and polyacrylates: AFM, DSC and XRD studies.J. Polym. Res.2013,20, 91..
De Rosa, C.; Auriemma, F.; Corradini, P. Crystal structure of form I of syndiotactic polypropylene.Macromolecules1996,29, 7452−7459..
Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization.Prog. Polym. Sci.2012,37, 1657−1677..
Feng, C.S.; Chen, Y.; Shao, J.; Li, G.; Hou, H.Q. The crystallization and melting behaviors of PDLA-b-PBS-b-PDLA triblock copolymers.Chinese J. Polym. Sci.2020,38, 298−310..
0
浏览量
110
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构