a.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
b.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
c.National-certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd., Guangzhou 510663, China
huangxianbo@Kingfa.com.cn (X.B.H.)
zysun@ciac.ac.cn (Z.Y.S.)
纸质出版日期:2024-6-1,
网络出版日期:2024-3-7,
收稿日期:2023-12-7,
修回日期:2024-1-3,
录用日期:2024-1-18
Scan for full text
Xue, J. T.; Bai, Y.; Peng, L.; Huang, X. B.; Sun, Z. Y. Exploring the interplay between local chain structure and stress distribution in polymer networks. Chinese J. Polym. Sci. 2024, 42, 874–885
Jin-Tong Xue, Yang Bai, Li Peng, et al. Exploring the Interplay between Local Chain Structure and Stress Distribution in Polymer Networks[J]. Chinese Journal of Polymer Science, 2024,42(6):874-885.
Xue, J. T.; Bai, Y.; Peng, L.; Huang, X. B.; Sun, Z. Y. Exploring the interplay between local chain structure and stress distribution in polymer networks. Chinese J. Polym. Sci. 2024, 42, 874–885 DOI: 10.1007/s10118-024-3099-3.
Jin-Tong Xue, Yang Bai, Li Peng, et al. Exploring the Interplay between Local Chain Structure and Stress Distribution in Polymer Networks[J]. Chinese Journal of Polymer Science, 2024,42(6):874-885. DOI: 10.1007/s10118-024-3099-3.
Illustration: Leveraging Voronoi tessellation and particle stresses
we visualized the stress distribution within the stretched cross-linked network
and investigated the relationships between Voronoi volume
bond length
bond angle
and their corresponding local stresses
elucidating the role of different types of local structures in controlling the mechanical properties of the cross-linked network.
The mechanical behavior of polymer networks is intrinsically correlated with the local chain topology and chain connectivity. In this study
we delve into this relationship through the lens of coarse-grained molecular dynamics (CG-MD) simulations. Our aim is to illuminate the intricate interplay between local topology and stress distribution within polymer monomers
cross-linkers
and various components with distinct cross-link connections
thereby elucidating their collective impact on the mechanical properties of polymer networks. We mainly focus on how specific local structures contribute to the overall mechanical response of the network. In particular
we employ local stress analysis to unravel the mechanics of these structures. Our findings reveal the diverse responses of individual components
such as junctions
strands
cross-linkers between junctions
and dangling chain ends
when subjected to stretching. Notably
we observe that these components exhibit varying degrees of deformation tolerance
underscoring the significance of their roles in determining the mechanical characteristics of the network. Our investigations highlight junctions as primary contributors to stress accumulation
and particles with higher local stress showing a stronger correlation between stress and Voronoi volume. Moreover
our results indicate that both strands and cross-linkers between junctions exhibit heightened stress levels as strand lengths decrease. This study enhances our understanding of the multifaceted factors governing the mechanical attributes of cross-linked polymer systems at the microstructural level.
Local chain structureLocal stressMolecular dynamics simulation
Ducrot, E.; Creton, C. Characterizing large strain elasticity of brittle elastomeric networks by embedding them in a soft extensible matrix.Adv. Funct. Mater.2016,26, 2482−2492..
Ducrot, E.; Chen, Y.; Bulters, M.; Sijbesma, R. P.; Creton, C. Toughening elastomers with sacrificial bonds and watching them break.Science2014,344, 186−189..
Li, M. X.; Chen, L. L.; Li, Y. R.; Dai, X. B.; Jin, Z. K.; Zhang, Y. C.; Feng, W. W.; Yan, L. T.; Cao, Y.; Wang, C. Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers.Nat. Commun.2022,13, 2279..
Wang, Y. J.; Liu, S. J.; Yu, W. Functionalized graphene oxide-reinforced chitosan hydrogel as biomimetic dressing for wound healing.Macromol. Biosci.2021,21, 2000432..
Gong, J. P. Materials both tough and soft.Science2014,344, 161−162..
Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels.Nature2012,489, 133−136..
Hagen, R.; Salmén, L.; Stenberg, B. Effects of the type of crosslink on viscoelastic properties of natural rubber.J. Polym. Sci., Part B: Polym. Phys.1996,34, 1997−2006..
Cui, X.; Jiang, N. F.; Shao, J. Y.; Zhang, H. D.; Yang, Y. L.; Tang, P. Linear and nonlinear viscoelasticities of dissociative and associative covalent adaptable networks: discrepancies and limits.Macromolecules2023,56, 772−784..
Zhang, W.; Cui, X.; Zhang, H. D.; Yang, Y. L.; Tang, P. Linear viscoelasticity, nonlinear rheology and applications of polyethylene terephthalate vitrimers.J. Polym. Sci.2023,61, 2010−2024..
Mukherji, D.; Abrams, C. F. Mechanical behavior of highly cross-linked polymer networks and its links to microscopic structure.Phys. Rev. E2009,79, 061802..
Liao, X. J.; Dulle, M.; de Souza e Silva, J. M.; Wehrspohn, R. B.; Agarwal, S.; Förster, S.; Hou, H. Q.; Smith, P.; Greiner, A. High strength in combination with high toughness in robust and sustainable polymeric materials.Science2019,366, 1376−1379..
Martinez, R. V.; Glavan, A. C.; Keplinger, C.; Oyetibo, A. I.; Whitesides, G. M. Soft actuators and robots that are resistant to mechanical damage.Adv. Funct. Mater.2014,24, 3003−3010..
Yang, Y.; Wu, Y. X.; Li, C.; Yang, X. M.; Chen, W. Flexible actuators for soft robotics.Adv. Intell. Syst.2020,2, 1900077..
Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics.Science2010,327, 1603−1607..
Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics.Adv. Mater.2018,30, 1801368..
Zhang, J.; Wang, W.; Wang, Y. B.; Qiu, C. L.; Mao, C. L.; Deng, S. W.; Wang, J. G. Effect of cross-linked structures on mechanical properties of styrene-butadiene rubberviamolecular dynamics simulation.Macromol. Theory Simul.2022,31, 2100054..
Bermejo, J. S.; Ugarte, C. M. Influence of cross-linking density on the glass transition and structure of chemically cross-linked PVA: a molecular dynamics study.Macromol. Theory Simul.2009,18, 317−327..
Lee, K. Y.; Rowley, J. A.; Eiselt, P.; Moy, E. M.; Bouhadir, K. H.; Mooney, D. J. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and crosslinking density.Macromolecules2000,33, 4291−4294..
Wu, B.; Chassé, W.; Peters, R.; Brooijmans, T.; Dias, A. A.; Heise, A.; Duxbury, C. J.; Kentgens, A. P. M.; Brougham, D. F.; Litvinov, V. M. Network structure in acrylate systems: effect of junction topology on cross-link density and macroscopic gel properties.Macromolecules2016,49, 6531−6540..
Lei, Z. X.; Zhang, Z. Z.; Wang, J.; Xu, L.; Li, J.; Zhu, Z. C.; Liu, Y. H. New strategy to construct mechanically strong and tough phenolic networks by considering the effect of curing reactions and physical states on the cross-linking density and cross-linking inhomogeneity.Ind. Eng. Chem. Res.2022,61, 8858−8870..
Shen, J. X.; Lin, X. S.; Liu, J.; Li, X. Effects of cross-link density and distribution on static and dynamic properties of chemically cross-linked polymers.Macromolecules2019,52, 121−134..
Seitz, J. T. The estimation of mechanical properties of polymers from molecular structure.J. Appl. Polym. Sci.1993,49, 1331−1351..
Gehman, S. D. Relationship between molecular structure and physical properties.Ind. Eng. Chem.1952,44, 730−739..
Gu, Y. W.; Zhao, J. L.; Johnson, J. A. Polymer networks: from plastics and gels to porous frameworks.Angew. Chem. Int. Ed.2020,59, 5022−5049..
James, H. M.; Guth, E. Theory of the increase in rigidity of rubber during cure.J. Chem. Phys.1947,15, 669−683..
Rubinstein, M.; Panyukov, S. Elasticity of polymer networks.Macromolecules2002,35, 6670−6686..
Rottach, D. R.; Curro, J. G.; Budzien, J.; Grest, G. S.; Svaneborg, C.; Everaers, R. Permanent set of cross-linking networks: comparison of theory with molecular dynamics simulations.Macromolecules2006,39, 5521−5530..
Davidson, J. D.; Goulbourne, N. C. Nonaffine chain and primitive path deformation in crosslinked polymers.Modell. Simul. Mater. Sci. Eng.2016,24, 065002..
Zhong, M. J.; Wang, R.; Kawamoto, K.; Olsen, B. D.; Johnson, J. A. Quantifying the impact of molecular defects on polymer network elasticity.Science2016,353, 1264−1268..
Lin, T. S.; Wang, R.; Johnson, J. A.; Olsen, B. D. Revisiting the elasticity theory for real gaussian phantom networks.Macromolecules2019,52, 1685−1694..
Grest, G. S.; Kremer, K. Statistical properties of random crosslinked rubbers.Macromolecules1990,23, 4994−5000..
Gao, Y. S.; Zhou, D. Z.; Lyu, J.; Sigen, A.; Xu, Q.; Newland, B.; Matyjaszewski, K.; Tai, H. Y.; Wang, W. X. Complex polymer architectures through free-radical polymerization of multivinyl monomers.Nat. Rev. Chem.2020,4, 194−212..
Seiffert, S. Origin of nanostructural inhomogeneity in polymer-network gels.Polym. Chem.2017,8, 4472−4487..
Galant, O.; Bae, S.; Silberstein, M. N.; Diesendruck, C. E. Highly stretchable polymers: mechanical properties improvement by balancing intra- and intermolecular interactions.Adv. Funct. Mater.2020,30, 1901806..
Galant, O.; Bae, S.; Wang, F.; Levy, A.; Silberstein, M. N.; Diesendruck, C. E. Mechanical and thermomechanical characterization of glassy thermoplastics with intrachain cross-links.Macromolecules2017,50, 6415−6420..
Deng, J. X.; Bai, R. X.; Zhao, J.; Liu, G. Q.; Zhang, Z. M.; You, W.; Yu, W.; Yan, X. Z. Insights into the correlation of cross-linking modes with mechanical properties for dynamic polymeric networks.Angew. Chem. Int. Ed.2023,62, e202309058..
Zhao, J.; Zhang, Z. M.; Cheng, L.; Bai, R. X.; Zhao, D.; Wang, Y. M.; Yu, W.; Yan, X. Z. Mechanically interlocked vitrimers.J. Am. Chem. Soc.2022,144, 872−882..
Creton, C.; Ciccotti, M. Fracture and adhesion of soft materials: a review.Rep. Prog. Phys.2016,79, 046601..
Slootman, J.; Waltz, V.; Yeh, C. J.; Baumann, C.; Göst, R.; Comtet, J.; Creton, C. Quantifying and mapping covalent bond scission during elastomer fracture, arXiv:2006.09468. arXiv.org ePrint archive. https://arxiv.org/abs/2006.09468.
Gu, Y. W.; Zhao, J. L. and Johnson, J. A. A (macro)molecular-level understanding of polymer network topology.Trends Chem.2019,1, 318−334..
Pei, H. W.; Zhu, Y. L.; Lu, Z. Y.; Li, J. P. and Sun. Z. Y. Automatic multiscale method of building up a cross-linked polymer reaction system: bridging smiles to the multiscale molecular dynamics simulation.J. Phys. Chem. B2023,127, 4905−4914..
Zhang, Z. Y.; Wang, Y. C.; Liu, P. L.; Chen, T. L.; Hou, G. Y.; Xu, L.; Wang, X.; Hu, Z. P.; Liu, J.; Zhang, L. Q. Quantitatively predicting the mechanical behavior of elastomers via fully atomistic molecular dynamics simulation.Polymer2021,223, 123704..
Uddin, M. S.; Ju. J. Multiscale modeling of a natural rubber: Bridging a coarse-grained molecular model to the rubber network theory.Polymer2016,101, 34−47..
Bandyopadhyay, A.; Valavala, P. K.; Clancy, T. C.; Wise, K. E.; Odegard, G. M. Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties.Polymer2011,52, 2445−2452..
Bandyopadhyay, A.; Odegard, G. M. Molecular modeling of crosslink distribution in epoxy polymers.Modell. Simul. Mater. Sci. Eng.2012,20, 045018..
Payal, R. S.; Fujimoto, K.; Jang, C.; Shinoda, W.; Takei, Y.; Shima, H.; Tsunoda, K.; Okazaki, S. Molecular mechanism of material deformation and failure in butadiene rubber: insight from all-atom molecular dynamics simulation using a bond breaking potential model.Polymer2019,170, 113−119..
Wang, Y. J.; Liu, H. F.; Li, P. P.; Wang, L. B. The effect of cross-linking type on EPDM elastomer dynamics and mechanical properties: a molecular dynamics simulation study.Polymers2022,14, 1308..
Wang, R.; Alexander-Katz, A.; Johnson, J. A.; Olsen, B. D. Universal cyclic topology in polymer networks.Phys. Rev. Lett.2016,116, 188302..
Kroll, D. M.; Croll, S. G. Influence of crosslinking functionality, temperature and conversion on heterogeneities in polymer networks.Polymer2015,79, 82−90..
Arora, A.; Lin, T. S.; Olsen, B. D. Coarse-grained simulations for fracture of polymer networks: stress versus topological inhomogeneities.Macromolecules2022,55, 4−14..
Lorenzo, F. D.; Seiffert, S. Nanostructural heterogeneity in hhpolymer networks and gels.Polym. Chem.2015,6, 5515−5528..
David, A.; Tartaglino, U.; Raos, G. Towards realistic simulations of polymer networks: tuning vulcanisation and mechanical properties.Phys. Chem. Chem. Phys.2021,23, 3496−3510..
Vogiatzis, G. G.; Theodorou, D. N. Local segmental dynamics and stresses in polystyrene−C60mixtures.Macromolecules2014,47, 387−404..
Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation.J. Chem. Phys.1990,92, 5057−5086..
Wang, J. L.; O'Connor, T. C.; Grest, G. S.; Ge, T. Superstretchable elastomer from cross-linked ring polymers.Phys. Rev. Lett.2022,128, 237801..
Subramaniyan, A. K.; Sun, C. T. Continuum interpretation of virial stress in molecular simulations.Int. J. Solids Struc.2008,45, 4340−4346..
Yang, F.; Zhong, Z. On the energy conservation during the active deformation in molecular dynamics simulations.J. Mech. Phys. Solids2015,77, 146−157..
Lion, T. W.; Allen, R. J. Computing the local pressure in molecular dynamics simulations.J. Phys.: Condens. Matter2012,24, 284133..
Branicio, P. S.; Srolovitz, D. J. Local stress calculation in simulations of multicomponent systems.J. Comput. Phys.2009,228, 8467−8479..
Rycroft, Chris H. Voro++: a three-dimensional voronoi cell library in C++.Chaos2009,19, 041111..
Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit.J. Comput. Chem.2013,34, 2197−2211..
Bae, J.; Kwon,H.; Park, S. R.; Lee, J.; Song, I. Explicit correlation coefficients among random variables, ranks, and magnitude ranks.IEEE Trans. Infor. Theory 2006 ,52, 2233−2240..
Song, H. Y.; Park, S. An analysis of correlation between personality and visiting place using Spearman's rank correlation coefficient.KSII Transactions on Internet and Information Systems2020,14, 1951−1966..
Widmer-Cooper, A.; Harrowell, P. Free volume cannot explain the spatial heterogeneity of Debye-Waller factors in a glass-forming binary alloy.J. Non-Crystalline Solids2006,352, 5098−5102..
Hocky, G. M.; Coslovich, D.; Ikeda, A.; Reichman, D. R. Correlation of local order with particle mobility in supercooled liquids is highly system dependent.Phys. Rev. Lett.2014,113, 157801..
Yao, P.; Feng, L. K.; Guo, H. X. Combined molecular dynamics simulation and rouse model analysis of static and dynamic properties of unentangled polymer melts with different chain architectures.Chinese J. Polym. Sci.2021,39, 512−524..
Wang, F.; Feng, L. K.; Li, Y. D.; Guo, H. X. Statics, dynamics and linear viscoelasticity from dissipative particle dynamics simulation of entangled linear polymer melts.Chinese J. Polym. Sci.2023,41, 1392−1409..
0
浏览量
69
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构