Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
dliang@pku.edu.cn
纸质出版日期:2024-09-01,
网络出版日期:2024-03-04,
收稿日期:2023-11-27,
修回日期:2024-01-02,
录用日期:2024-01-12
Scan for full text
Ren, T. H.; Liang, D. H. Polyelectrolyte complexes and coacervates formed by De novo-designed peptides and oligonucleotide. Chinese J. Polym. Sci. 2024, 42, 1333–1340
Tian-Hao Ren, De-Hai Liang. Polyelectrolyte Complexes and Coacervates Formed by
Ren, T. H.; Liang, D. H. Polyelectrolyte complexes and coacervates formed by De novo-designed peptides and oligonucleotide. Chinese J. Polym. Sci. 2024, 42, 1333–1340 DOI: 10.1007/s10118-024-3096-6.
Tian-Hao Ren, De-Hai Liang. Polyelectrolyte Complexes and Coacervates Formed by
Electrostatic interaction determines the growth and size of the peptide/ss-oligo coacervates by controlling the strength of complexation and the degree of chain relaxation. The hydrophobic interaction is prominent when the charges are neutralized. The secondary structures of peptides exhibit an effect even stronger than that of the electrostatic interaction.
The liquid-liquid phase separation of biopolymers in living cells contains multiple interactions and occurs in a dynamic environment. Resolving the regulation mechanism is still a challenge. In this work
we designed a series of peptides (XXLY)
6
SSSGSS and studied their complexation and coacervation behavior with single-stranded oligonucleotides. The “X” and “Y” are varied to combine known amounts of charged and non-charged amino acids
together with the introduction of secondary structures and pH responsiveness. Results show that the electrostatic interaction
which is described as charge density
controls both the strength of complexation and the degree of chain relaxation
and thus determines the growth and size of the coacervates. The hydrophobic interaction is prominent when the charges are neutralized. Interestingly
the secondary structures of peptides exhibit profound effect on the morphology of the phases
such as solid phase to liquid phase transition. Our study gains insight into the phase separation under physiological conditions. It is also helpful to create coacervates with desirable structures and functions.
Polyelectrolyte complexCoacervatePeptidesSecondary structureElectrostatic interaction
Meka, V. S.; Singe, M. K. G.; Pichika, M. R.; Nali, S. R.; Kolapaili, V. R. M.; Kesharwani, P. A comprehensive review on polyelectrolyte complexes.Drug Discov. Today2017,22, 1697−1706..
Liu, H. D.; Sato, T. Polymer colloids formed by polyelectrolyte complexation of vinyl polymers and polysaccharides in aqueous solution.Chinese J. Polym. Sci.2013,31, 39−49..
Shi, X. H.; Chen, L.; Liu, B. W.; Long, J. W.; Xu, Y. J.; Wang, Y. Z. Carbon fibers decorated by polyelectrolyte complexes toward their epoxy resin composites with high fire safety.Chinese J. Polym. Sci.2018,36, 1375−1384..
Huang, W. T.; Li, J. F.; Liu, D. Z.; Tan, S. X.; Zhang, P. F.; Zhu, L. P.; Yang, S. G. Polyelectrolyte complex fiber of alginate and poly(diallyldimethylammonium chloride): humidity-induced shape memory and mechanical transition.ACS Appl. Polym. Mater.2020,2, 2119−2125..
Huang, W. T.; Liu, D. Z.; Zhu, L. P.; Yang, S. G. A salt controlled scalable approach for formation of polyelectrolyte complex fiber.Chinese J. Chem.2020,38, 465−470..
Yewdall, N. A.; André, A. A. M.; Lu, T. M.; Spruijt, E. Coacervates as models of membraneless organelles.Curr. Opin. Colloid In.2021,52, 101416..
Gao, N.; Mann, S. Membranized coacervate microdroplets: from versatile protocell models to cytomimetic materials.Acc. Chem. Res.2023,56, 297−307..
Mu, W. J.; Ji, Z.; Zhou, M. S.; Wu, J. Z.; Lin, Y. Y.; Qiao, Y. Membrane-confined liquid-liquid phase separation toward artificial organelles.Sci. Adv.2021,7, eabf9000..
Moreau, N. G.; Martin, N.; Gobbo, P.; Tang, T. Y. D.; Mann, S. Spontaneous membrane-less multi-compartmentalization via aqueous two-phase separation in complex coacervate micro-droplets.Chem. Commun.2020,56, 12717−12720..
Blocher, W. C.; Perry, S. L. Complex coacervate-based materials for biomedicine.Wires Nanomed Nanobi.2017,9, e1442..
McTigue, W. C. B.; Perry, S. L. Protein encapsulation using complex coacervates: what nature has to teach us.Small2020,16, 1907671..
Sun, Y.; Lau, S. Y.; Lim, Z. W.; Chang, S. C.; Ghadessy, F.; Partridge, A.; Miserez, A. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics.Nat. Chem.2022,14, 274−283..
Ban, E.; Kim, A. Coacervates: recent developments as nanostructure delivery platforms for therapeutic biomolecules.Int. J. Pharmaceut.2022,624, 122058..
Johnson, N. R.; Wang, Y. D. Coacervate delivery systems for proteins and small molecule drugs.Expert Opin. Drug. Del.2014,11, 1829−1832..
Wang, J.; Abbas, M.; Huang, Y.; Wang, J.; Li, Y. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs.Commun. Chem.2023,6, 243..
Turgeon, S. L.; Schmitt, C.; Sanchez, C. Protein-polysaccharide complexes and coacervates.Curr. Opin. Colloid. In.2007,12, 166−178..
Chen, S. J.; Guo, Q.; Yu, J. Bio-inspired functional coacervates.Aggregate2022,3, e293..
Stewart, R. J.; Wang, C. S.; Shao, H. Complex coacervates as a foundation for synthetic underwater adhesives.Adv. Colloid Interface2011,167, 85−93..
Forooshani, P. K.; Lee, B. P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein.J. Polym. Sci., Part A: Polym. Chem.2017,55, 9−33..
Rumyantsev, A. M.; Jackson, N. E.; de Pablo, J. J. Polyelectrolyte complex coacervates: recent developments and new frontiers.Annu. Rev. Conden. Ma. P2021,12, 155−176..
Oparin, A. I.The Origin of Life. MacMillan: New York, 1938 , 1–6..
Fry, I. The origins of research into the origins of life.Endeavour2006,30, 24−28..
Gözen, I.; Köksal, E. S.; Poldsalu, I.; Xue, L.; Spustova, K.; Pedrueza-Villalmanzo, E.; Ryskulov, R.; Meng, F. D.; Jesorka, A. Protocells: milestones and recent advances.Small2022,18, 2106624..
Li, F.; Lin, Y. Y.; Qiao, Y. Regulating FUS liquid-liquid phase separationviaspecific metal recognition.Chinese J. Polym. Sci.2022,40, 1043−1049..
Veis, A. A review of the early development of the thermodynamics of the complex coacervation phase separation.Adv. Colloid Interface2011,167, 2−11..
Sing, C. E.; Perry, S. L. Recent progress in the science of complex coacervation.Soft Matter2020,16, 2885−2914..
Overbeek, J. T. G. a. V., M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation.J. Cell. Comp. Physiol.1957,49, 7−26..
Michaeli, I.; Overbeek, J. T. G.; Voorn, M. J. Phase separation of polyelectrolyte solutions.J. Polym. Sci.1957,23, 443−450..
Shi, A. C.; Noolandi, J. Theory of inhomogeneous weakly charged polyelectrolytes.Macromol. Theor. Simul.1999,8, 214−229..
Wang, Q.; Taniguchi, T.; Fredrickson, G. H. Self-consistent field theory of polyelectrolyte systems.J. Phys. Chem. B2004,108, 6733−6744..
Shusharina, N. P.; Zhulina, E. B.; Dobrynin, A. V.; Rubinstein, M. Scaling theory of diblock polyampholyte solutions.Macromolecules2005,38, 8870−8881..
Wang, Z. W.; Rubinstein, M. Regimes of conformational transitions of a diblock polyampholyte.Macromolecules2006,39, 5897−5912..
Sing, C. E. Development of the modern theory of polymeric complex coacervation.Adv. Colloid Interface2017,239, 2−16..
Tabandeh, S.; Leon, L. Engineering peptide-based polyelectrolyte complexes with increased hydrophobicity.Molecules2019,24, 868..
Huang, J.; Laaser, J. E. Charge density and hydrophobicity-dominated regimes in the phase behavior of complex coacervates.ACS Macro Lett.2021,10, 1029−1034..
Vieregg, J. R.; Lueckheide, M.; Marciel, A. B.; Leon, L.; Bologna, A. J.; Rivera, J. R.; Tirrell, M. V. Oligonucleotide-peptide complexes: phase control by hybridization.J. Am. Chem. Soc.2018,140, 1632−1638..
Pacalin, N. M.; Leon, L.; Tirrell, M. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides.Eur. Phys. J.-Spec. Top.2016,225, 1805−1815..
Cheng, C.; Tu, Z. C.; Wang, H. pH-induced complex coacervation of fish gelatin and carboxylated chitosan: phase behavior and structural properties.Food Res. Int. 2023, 167, 112652..
Kaibara, K.; Okazaki, T.; Bohidar, H. B.; Dubin, P. L. pH-induced coacervation in complexes of bovine serum albumin and cationic polyelectrolytes.Biomacromolecules2000,1, 100−107..
Priftis, D.; Tirrell, M. Phase behaviour and complex coacervation of aqueous polypeptide solutions.Soft Matter2012,8, 9396−9405..
Perry, S. L.; Li, Y.; Priftis, D.; Leon, L.; Tirrell, M. The effect of salt on the complex coacervation of vinyl polyelectrolytes.Polymers2014,6, 1756−1772..
Love, C.; Steinkühler, J.; Gonzales, D. T.; Yandrapalli, N.; Robinson, T.; Dimova, R.; Tang, T. Y. D. Reversible pH-responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions.Angew. Chem. Int. Ed.2020,59, 5950−5957..
Zhou, J.; Wan, Y.; Cohen Stuart, M. A.; Wang, M.; Wang, J. Effects of control factors on protein-polyelectrolyte complex coacervation.Biomacromolecules Article ASAP ..
Mart, R. J.; Osborne, R. D.; Stevens, M. M.; Ulijn, R. V. Peptide-based stimuli-responsive biomaterials.Soft Matter2006,2, 822−835..
Ulijn, R. V.; Woolfson, D. N. Peptide and protein based materials in 2010: from design and structure to function and application.Chem Soc Rev2010,39, 3349−3350..
Wang, L.; Wang, N. X.; Zhang, W. P.; Cheng, X. R.; Yan, Z. B.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Y. Therapeutic peptides: current applications and future directions.Signal Transduct Tar.2022,7, 48..
Bai, Q. W.; Zhang, Q. F.; Jing, H. R.; Chen, J. X.; Liang, D. H. Liquid-Liquid Phase Separation of Peptide/Oligonucleotide Complexes in Crowded Macromolecular Media.J. Phys. Chem. B2021,125, 49−57..
Kyte, J.; Doolittle, R. F. A simple method for displaying the hydropathic character of a protein.J. Mol. Biol.1982,157, 105−132..
Stothard, P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences.Biotechniques2000,28, 1102−1104..
Lehninger, A. L.; Nelson, D. L.; Cox, M. M.Principles of Biochemistry. Worth Publishers: New York, 1982 , 615−643..
Wang, H.; Davis, R. H. Collective effects of gravitational and Brownian coalescence on droplet growth.J Colloid Interf. Sci.1996,178, 47−52..
0
浏览量
73
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构