a.State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
b.State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430074, China
c.National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
d.Wuhan EasyMFG Technology CO., LTD, Wuhan 430074, China
wqs_xn@hust.edu.cn
纸质出版日期:2024-5-1,
网络出版日期:2024-1-11,
收稿日期:2023-10-31,
修回日期:2023-11-28,
录用日期:2023-12-6
Scan for full text
Sun, J. T.; Fan, Z. Y.; Mao, Y. W.; Li, W.; Zhu, W.; Cai, D. S.; Wei, Q. S. High speed sintering: assessing the influence of energy input on microstructure and mechanical properties of polyether block amide (PEBA) parts. Chinese J. Polym. Sci. 2024, 42, 675–682
Jiang-Tao Sun, Zhi-Yong Fan, Yi-Wei Mao, et al. High Speed Sintering: Assessing the Influence of Energy Input on Microstructure and Mechanical Properties of Polyether Block Amide (PEBA) Parts[J]. Chinese Journal of Polymer Science, 2024,42(5):675-682.
Sun, J. T.; Fan, Z. Y.; Mao, Y. W.; Li, W.; Zhu, W.; Cai, D. S.; Wei, Q. S. High speed sintering: assessing the influence of energy input on microstructure and mechanical properties of polyether block amide (PEBA) parts. Chinese J. Polym. Sci. 2024, 42, 675–682 DOI: 10.1007/s10118-024-3077-9.
Jiang-Tao Sun, Zhi-Yong Fan, Yi-Wei Mao, et al. High Speed Sintering: Assessing the Influence of Energy Input on Microstructure and Mechanical Properties of Polyether Block Amide (PEBA) Parts[J]. Chinese Journal of Polymer Science, 2024,42(5):675-682. DOI: 10.1007/s10118-024-3077-9.
Brief summary: This paper describes the effect of infrared lamp power on PEBA parts from the point of view of microstructure and mechanical properties. It proves the applicability of high-speed sintering process to PEBA materials. The forming parameters and performance parameters in this paper can provide guidance for its application.
High speed sintering
a new powder-bed fusion additive manufacturing technology
utilizes infrared lights (IR) to intensely heat and melt polymer powders. The presence of defects such as porosity
which is associated with particle coalescence
is highly dependdent on the level of energy input. This study investigate the influcence of energy input on porosity and its subsequent effects on the mechanical properties and microstructures of PEBA parts. The parts were manufactured with a variety of lamp powers
resulting in a range of energy input levels spanning from low to high. Subsequebtly
they underwent testing using Archimedes’ method
followed by tensile testing. The porosity
mechanical characteristics
and energy input exhibit a strong correlation; inadequate energy input was the primary cause of pore formation. Using the reduced IR light power resulted in the following outcomes: porosity
ultimate tensile strength
and elongation of 1.37%
7.6 MPa
and 194.2%
respectively. When the energy input was further increased
the porosity was reduced to as low as 0.05% and the ultimate tensile strength and elongation were increased to their peak values of 233.8% and 9.1 MPa
respectively.
High speed sinteringAdditive manufacturingEnergy inputPowder bed fusionPEBA
Mao, Y.; Yuan, J.; Heng, Y.; Feng, K.; Cai, D.; Wei, Q. Effect of hot isostatic pressing treatment on porosity reduction and mechanical properties enhancement of 316L stainless steel fabricated by binder jetting.Virtual Phys. Prototyp.2023, 18, 2174703..
Mao, Y.; Cai, C.; Zhang, J.; Heng, Y.; Feng, K.; Cai, D.; Wei, Q. Effect of sintering temperature on binder jetting additively manufactured stainless steel 316L: densification, microstructure evolution and mechanical properties.J. Mater. Res. Technol.2023, 22, 2720−2735..
Cheng, T.; Chen, H.; Wei, Q. The role of roller rotation pattern in the spreading process of polymer/short-fiber composite powder in selective laser sintering.Polymers2022, 14, 14122345..
Sun, S.; Teng, Q.; Xie, Y.; Liu, T.; Ma, R.; Bai, J.; Wei, Q. Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility.Addit. Manuf.2021, 46, 102168..
Tian, C.; Ouyang, D.; Wang, P.; Zhang, L.; Cai, C.; Zhou, K.; Shi, Y. Strength-ductility synergy of an additively manufactured metastable high-entropy alloy achieved by transformation-induced plasticity strengthening.Int. J. Plast.2023, 172, 103823..
Feng, K.; Hu, S.; Li, L.; Mao, Y.; Heng, Y.; Yuan, J.; Wei, Q. Preparation of low residual silicon content Si-SiC ceramics by binder jetting additive manufacturing and liquid silicon infiltration.J. Eur. Ceram. Soc.2023, 43, 5446−5457..
Chen, J.; An, R.; Tey, W. S.; Zeng, Q.; Zhao, L.; Zhou, K.In situfiller addition for homogeneous dispersion of carbon nanotubes in multi jet fusion-printed elastomer composites.Adv. Sci. 2023 ,10, 2300593..
Hou, Y.; Gao, M.; Gao, J.; Zhao, L.; Teo, E. H. T.; Wang, D.; Zhou, K. 3D printed conformal strain and humidity sensors for human motion prediction and health monitoringviamachine learning.Adv. Sci. 2023 , DOI:10.1002/advs.202304132..
Tey W S.; Cai C.; Zhou K. A comprehensive investigation on 3D printing of polyamide 11 and thermoplastic polyurethane viamulti jet fusion.Polymers2021, 13, 2139..
Olubummo, A.; Zhao, L.; Hartman, A.; Tom, H.; Zhao, Y.; Wycoff, K. Photothermal bleaching of nickel dithiolene for bright multi-colored 3D printed parts.Nat. Commun.2023, 14, 586..
Cai, C.; Tey, W. S.; Chen, J.; Zhu, W.; Liu, X.; Liu, T.; Zhou, K. Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion.J. Mater. Process. Technol.2021, 288, 116882..
Xu, Z.; Wang, Y.; Wu, D.; Ananth, K. P.; Bai, J. The process and performance comparison of polyamide 12 manufactured by multi jet fusion and selective laser sintering.J. Manuf. Process.2019, 47, 419−426..
Liu, X.; Tey, W. S.; Choo, J. Y. C.; Chen, J.; Tan, P.; Cai, C.; Zhou, K. Enhancing the mechanical strength of multi jet fusion-printed polyamide 12 and its glass fiber-reinforced composite viahigh-temperature annealing.Addit. Manuf.2021, 46, 102205..
Rosso, S.; Meneghello, R.; Biasetto, L.; Grigolato, L.; Concheri, G., Savio, G. In-depth comparison of polyamide 12 parts manufactured by Multi Jet Fusion and Selective Laser Sintering.Addit. Manuf.2020, 36, 101713..
Mele, M.; Campana, G.; Pisaneschi, G.; Monti, G. L. Investigation into effects of cooling rate on properties of polyamide 12 parts in the multi jet fusion process.Rapid Prototyp. J.2020, 26, 1789−1795..
Williams, R. J.; Smith, P. J.; Majewski, C. Is ink heating a relevant concern in the High Speed Sintering process.Int. J. Adv. Manuf. Technol.2021, 113, 1073−1080..
Williams, R. J.; Al-Dirawi, K. H.; Brown, R.; Burt, J.; Bayly, A. E.; Majewski, C. Correlations between powder wettability and part colour in the High Speed Sintering process.Addit. Manuf.2021, 47, 102361..
Guo X. Melting behavior of a poly (ether-block-amide) copolymer melt-crystallized under quiescent, isothermal conditions.J. Polym. Sci., Part B: Polym. Phys.2008, 46, 2035−2046..
Rangarajan, P.; Register, R. A.; Adamson, D. H.; Fetters, L. J.; Bras, W.; Naylor, S.; Ryan, A. J. Dynamics of structure formation in crystallizable block copolymers.Macromolecules1995, 28, 1422−1428..
Konyukhova, E. V.; Buzin, A. I.; Godovsky, Y. K. Melting of polyether block amide (Pebax): the effect of stretching.Thermochim. Acta.2002, 391, 271−277..
Sheth, J. P.; Xu, J.; Wilkes, G. L. Solid state structure–property behavior of semicrystalline poly(ether-block-amide) PEBAX® thermoplastic elastomers.Polymer2003, 44, 743−756..
Cao, Y.; Zhu, P.; Wang, Z.; Zhou, Y.; Chen, H.; Müller, A. J.; Dong, X. Influence of soft block crystallization on microstructural variation of double crystalline poly (ether-mb-amide) multiblock copolymers.Polym. Crystallization.2018, 1, 10012..
Wang, G.; Zhao, G.; Dong, G.; Mu, Y.; Park, C. B.; Wang, G. Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening.Eur. Polym. J.2018, 103, 68−79..
Cao, Y.; Pang, Y.; Dong, X.; Wang, D.; Zheng, W. To clarify the resilience of PEBA/MWCNT foams viarevealing the effect of the nanoparticle and the cellular structure.ACS Appl. Polym. Mater.2021, 3, 3766−3775..
Chen J, Zhao L, Zhou K. Multi-jet fusion 3D voxel printing of conductive elastomers.Adv. Mater.2022, 34, 2205909..
ASTM International. Standard test method for tensile properties of plastics. ASTM international, 2014 .
Begenir A, Michielsen S, Pourdeyhimi B. Crystallization behavior of elastomeric block copolymers: thermoplastic polyurethane and polyether-block-amide.J. Appl. Polym. Sci.2009, 111, 1246−1256..
Hu, G.; Kang, J.; Ng, L. W.; Zhu, X.; Howe, R. C.; Jones, C. G.; Hasan, T. Functional inks and printing of two-dimensional materials.Chem. Soc. Rev.2018, 47, 3265−3300..
Frick A, Rochman A. Characterization of TPU-elastomers by thermal analysis (DSC).Polym. Test.2004, 23, 413−417..
Ma, N.; Liu, W.; Ma, L.; He, S.; Liu, H.; Zhang, Z.; Zhu, C. Crystal transition and thermal behavior of Nylon 12.E-Polymers2020, 20, 346−352..
Bellehumeur C T, Kontopoulou M, Vlachopoulos J. The role of viscoelasticity in polymer sintering.Rheol. Acta.1998, 37, 270−278..
Benedetti, L.; Brulé, B.; Decraemer, N.; Evans, K. E.; Ghita, O. Evaluation of particle coalescence and its implications in laser sintering.Powder Technol.2019, 342, 917−928..
Wakai, F.; Katsura, K.; Kanchika, S.; Shinoda, Y.; Akatsu, T.; Shinagawa, K. Sintering force behind the viscous sintering of two particles.Acta Mater.2016, 109, 292−299..
Schmid M, Amado A, Wegener K. Materials perspective of polymers for additive manufacturing with selective laser sintering.J. Mater. Res.2014, 29, 1824−1832..
Saffarzadeh M, Gillispie G J, Brown P. Selective Laser Sintering (SLS) rapid protytping technology: a review of medical applications.RMBS 2016 and 53 rd International ISA Biomedical Sciences Instrumentation Symposium. 2016 , 8−10..
0
浏览量
9
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构