a.Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
b.Spallation Neutron Source Science Center, China Spallation Neutron Source, Dongguan 523803, China
c.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
d.College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
youy@gzu.edu.cn (Y.Y.)
cesrmz@mail.sysu.edu.cn (M.Z.R.)
ceszmq@mail.sysu.edu.cn (M.Q.Z.)
Scan for full text
Dai, W. T.; Xie, Z. H.; Ke, Y. B.; You, Y.; Rong, M. Z.; Zhang, M. Q. Topological confinement in reversibly interlocked polymer networks. Chinese J. Polym. Sci. 2024, 42, 133–140
Wan-Ting Dai, Zhen-Hua Xie, Yu-Bin Ke, et al. Topological Confinement in Reversibly Interlocked Polymer Networks[J]. Chinese Journal of Polymer Science, 2024,42(2):133-140.
Dai, W. T.; Xie, Z. H.; Ke, Y. B.; You, Y.; Rong, M. Z.; Zhang, M. Q. Topological confinement in reversibly interlocked polymer networks. Chinese J. Polym. Sci. 2024, 42, 133–140 DOI: 10.1007/s10118-024-3070-3.
Wan-Ting Dai, Zhen-Hua Xie, Yu-Bin Ke, et al. Topological Confinement in Reversibly Interlocked Polymer Networks[J]. Chinese Journal of Polymer Science, 2024,42(2):133-140. DOI: 10.1007/s10118-024-3070-3.
In this work, swelling-induced structural evolution of the two sub-networks mutually affected each other through regulating the pH of the swelling solvent, even when the inter-component hydrogen bonds were absent, proving the presence of topological interlocking.
Recently, we reported a series of reversibly interlocked polymer networks (RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-networks, although the direct evidence for the deduction is still lacking. Herein, a specially-designed RILNs system, in which the inter-component hydrogen bonds can be shielded as needed, was prepared and used to study the micro-structures of RILNs, aiming to verify the existence of mechanical interlocking in RILNs. By changing the pH of the swelling solvent, the effect exerted by the inter-component non-covalent bonds was eliminated, so detailed information of the networks structure was exposed. The small angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) results indicated that swelling-induced structural evolution of the two sub-networks mutually affected each other, even when the inter-component hydrogen bonds were absent, proving the presence of topological interlocking. The findings may help to draw a more accurate physical image and reveal the detailed structure-property relationship of RILNs.
Reversibly interlocked polymer networksSmall angle X-ray scatteringSmall-angle neutron scatteringTopological confinement
Chen,L.Y.;Sheng,X.R.;Li,G.F.;Huang,F.H.Mechanicallyinterlockedpolymersbasedonrotaxanes.Chem. Soc. Rev.2022, 51,7046−7065..
Hart,L.F.;Hertzog,J.E.;Rauscher,P.M.;Rawe,B.W.;Tranquilli,M.M.;Rowan,S.J.Materialpropertiesandapplicationsofmechanicallyinterlockedpolymers.Nat. Rev. Mater.2021, 6,508−530..
Liu,C.;Morimoto,N.;Jiang,L.;Kawahara,S.;Noritomi,T.;Yokoyama,H.;Mayumi,K.;Ito,K.Toughhydrogelswithrapidself-reinforcement.Science2021, 372,1078−1081..
Johnson,J.A.;Turro,N.J.;Koberstein,J.T.;Mark,J.E.Somehydrogelshavingnovelmolecularstructures.Prog. Polym. Sci.2010, 35,332−337..
Ito,K.Slide-ringmaterialsusingtopologicalsupramoleculararchitecture.Curr. Opin. Solid St. M.2010, 14,28−34..
Xie,Z.H.;Rong,M.Z.;Zhang,M.Q.;Liu,D.Implementationofthepulleyeffectofpolyrotaxaneintransparentbulkpolymerforsimultaneousstrengtheningandtoughening.Macromol. Rapid Commun.2020, 41,e2000371..
Tanaka,Y.;Gong,J.P.;Osada,Y.Novelhydrogelswithexcellentmechanicalperformance.Prog. Polym. Sci.2005, 30,1−9..
Gong,J.P.;Katsuyama,Y.;Kurokawa,T.;Osada,Y.Double-networkhydrogelswithextremelyhighmechanicalstrength.Adv. Mater.2003, 15,1155−1158..
Zhao,J.;Zhang,Z.M.;Cheng,L.;Bai,R.X.;Zhao,D.;Wang,Y.M.;Yu,W.;Yan,X.Z.Mechanicallyinterlockedvitrimers.J. Am. Chem. Soc.2022, 144,872−882..
Luo,Z.;Zhang,X.H.;Zhao,J.;Bai,R.X.;Wang,C.Y.;Wang,Y.H.;Zhao,D.;Yan,X.Z.Mechanicallyinterlocked[2]rotaxaneaerogelswithtunablemorphologiesandmechanicalproperties.Angew. Chem. Int. Ed.2023, 62,e202306489..
Yang,J.W.;Bai,R.B.;Chen,B.H.;Suo,Z.G.Hydrogeladhesion:asupramolecularsynergyofchemistry,topology,andmechanics.Adv. Funct. Mater.2019, 30,1901693..
Steck,J.;Yang,J.W.;Suo,Z.G.Covalenttopologicaladhesion.ACS Macro Lett.2019, 8,754−758..
You,Y.;Rong,M.Z.;Zhang,M.Q.Reversiblyinterlockedpolymernetworks:design,preparationandapplications.Acta Polymerica Sinica(inChinese)2023, 54,14−36..
You,Y.;Peng,W.L.;Xie,P.;Rong,M.Z.;Zhang,M.Q.;Liu,D.Topologicalrearrangement-derivedhomogeneouspolymernetworkscapableofreversiblyinterlocking:fromphantomtorealityandbeyond.Mater. Today2020, 33,45−55..
You,Y.;Rong,M.Z.;Zhang,M.Q.Adaptablereversiblyinterlockednetworksfromimmisciblepolymersenhancedbyhierarchy-inducedmultilevelenergyconsumptionmechanisms.Macromolecules2021, 54,4802−4815..
Peng,W.L.;You,Y.;Xie,P.;Rong,M.Z.;Zhang,M.Q.Adaptableinterlockingmacromolecularnetworkswithhomogeneousarchitecturemadefromimmisciblesinglenetworks.Macromolecules2020, 53,584−593..
Peng,W.L.;Zhang,Z.P.;Rong,M.Z.;Zhang,M.Q.ReversiblyinterlockedmacromoleculenetworkswithenhancedmechanicalpropertiesandwidepHrangeofunderwaterself-healability.ACS Appl. Mater. Interfaces2020, 12,27614−27624..
Yuan,S.J.;Peng,Z.Q.;Rong,M.Z.;Zhang,M.Q.Enhancementofintrinsicthermalconductivityofliquidcrystallineepoxythroughthestrategyofinterlockedpolymernetworks.Mater. Chem. Front.2022, 6,1137−1149..
You,Y.;Fu,M.R.;Rong,M.Z.;Zhang,M.Q.Improvingcreepresistancewhilemaintainingreversibilityofcovalentadaptivenetworks viaconstructingreversiblyinterlockedpolymernetworks.Mater. Today Chem.2022, 23,100687..
Huang,Z.X.;Xie,Z.H.;Zhang,Z.P.;Zhang,T.;Rong,M.Z.;Zhang,M.Q.Highlyionicconductive,self-healablesolidpolymerelectrolytebasedonreversiblyinterlockedmacromoleculenetworksforlithiummetalbatteriesworkableatroomtemperature.J. Mater. Chem. A2022, 10,18895−18906..
Yuan,S.J.;Peng,Z.Q.;Rong,M.Z.;Zhang,M.Q.Increasingstrengthsofliquidcrystallinepolymerswhileminimizinganisotropy viatopologicalrearrangementassistedbi-directionalstretchingofreversiblyinterlockedmacromolecularnetworks.Appl. Mater. Today2022, 29,101643..
Ou,Z.R.;Peng,W.L.;Rong,M.Z.;Zhang,M.Q.Controllabledepolymerizationandrecoveryofinterlockedcovalentadaptablenetworks viacascadingreactionsofthebuilt-inreversiblebonds.Macromolecules2022, 55,262−269..
Meng,D.;Wang,K.;Wang,W.;Sun,J.;Wang,H.;Gu,X.;Zhang,S.Abiomimeticstructuredbio-basedflameretardantcoatingonflexiblepolyurethanefoamwithlowsmokereleaseandantibacterialability.Chemosphere2023, 312,137060..
Dai,W.T.;Xie,Z.H.;Ke,Y.B.;You,Y.;Rong,M.Z.;Zhang,M.Q.;He,C.Y.;Jiang,H.Q.;Yang,H.Mechanicalenhancementmechanismofinterlockedpolymernetworks.Mater. Today Phys.2022, 27,100768..
Fu,M.R.;You,Y.;Rong,M.Z.;Zhang,M.Q.Thecriticalroleofinter-componenthydrogenbondsintheformationofreversiblyinterlockedpolymernetworks.Mater. Chem. Front.2022, 6,52−62..
Wang,L.;Guo,L.;Zhang,K.;Xia,Y.;Hao,J.;Wang,X.Developmentoftoughthermoplasticelastomersbyleveragingrigid-flexiblesupramolecularsegmentinterplays.Angew. Chem. Int. Ed.2023, 62,e202301762..
Guo,Z.;Lu,X.;Wang,X.;Li,X.;Li,J.;Sun,J.Engineeringofchainrigidityandhydrogenbondcross-linkingtowardultra-strong,healable,recyclable,andwater-resistantelastomers.Adv. Mater.2023, 35,2300286..
Waters,D.J.;Engberg,K.;Parke-Houben,R.;Ta,C.N.;Jackson,A.J.;Toney,M.F.;Frank,C.W.Structureandmechanismofstrengthenhancementininterpenetratingpolymernetworkhydrogels.Macromolecules2011, 44,5776−5787..
Khutoryanskiy,V.V.;Dubolazov,A.V.;Nurkeeva,Z.S.;Mun,G.A.pHeffectsinthecomplexformationandblendingofpoly(acrylicacid)withpoly(ethyleneoxide).Langmuir2004, 20,3785−3790..
Nishi,S.;Kotaka,T.Complex-formingpoly(oxyethylene)/poly(acrylicacidinterpenetratingpolymernetworks.2.Functionasachemicalvalve.Macromolecules1986, 19,978−984..
Zhang,M.Q.;Rong,M.Z.Extrinsic and Intrinsic Approaches to Self-healing Polymers and Polymer Composites.Hoboken:JohnWiley&Sons,Inc.: 2022 ..
Nishi,S.;Kotaka,T.Complex-formingpoly(oxyethylene):poly(acrylicacid)interpenetratingpolymernetworks.1.Preparation,structure,andviscoelasticproperties.Macromolecules1985, 18,1519−1525..
Horkay,F.;Basser,P.J.IonicandpHeffectsontheosmoticpropertiesandstructureofpolyelectrolytegels.J. Polym. Sci., Part B: Polym. Phys.2008, 24,2803−2810..
Hiroi,T.;Kondo,S.;Sakai,T.;Gilbert,E.P.;Han,Y.-S.;Kim,T.H.;Shibayama,M.Fabricationandstructuralcharacterizationofmodule-assembledamphiphilicconetworkgels.Macromolecules2016, 49,4940−4947..
Nakagawa,S.;Li,X.;Kamata,H.;Sakai,T.;Gilbert,E.P.;Shibayama,M.Microscopicstructureofthe“nonswellable”thermoresponsiveamphiphilicconetwork.Macromolecules2017, 50,3388−3395..
Xie,S.;Zhang,B.;Mao,Y.;He,L.;Hong,K.;Bates,F.S.;Lodge,T.P.Influenceofaddedsaltonchainconformationsinpoly(ethyleneoxide)melts:SANSanalysiswithcomplications.Macromolecules2020, 53,7141−7149..
Saffer,E.M.;Lackey,M.A.;Griffin,D.M.;Kishore,S.;Tew,G.N.;Bhatia,S.R.SANSstudyofhighlyresilientpoly(ethyleneglycol)hydrogels.Soft Matter2014, 10,1905−1916..
Kureha,T.;Ohira,M.;Takahashi,Y.;Li,X.;Gilbert,E.P.;Shibayama,M.Nanoscalestructuresofpoly(oligoethyleneglycolmethylethermethacrylate)hydrogelsrevealedbysmall-angleneutronscattering.Macromolecules2022, 55,1844−1854..
Mendes,E.;Hakiki,A.;Herz,J.;Boue,F.;Bastide,J.Structureoftrifunctionalend-linkpolymergelsstudiedbySANS.Macromolecules2004, 37,2643−2649..
Sugiyama,M.;Annaka,M.;Hara,K.;Vigild,M.E.;Wignall,G.D.Small-anglescatteringstudyofmesoscopicstructuresinchargedgelandtheirevolutionondehydration.J. Phys. Chem. B2003, 107,6300−6308..
Dai,W.T.;Hou,J.W.;Wang,F.F.;You,Y.;Sun,P.C.;Rong,M.Z.;Zhang,M.Q.Compositionfluctuationofreversibleinterlockedpolymernetworksonmicroscale:inhomogeneityinhomogeneity.Macromolecules2023, 56,7300−7311..
Shinohara,Y.;Kayashima,K.;Okumura,Y.;Zhao,C.M.;Ito,K.;Amemiya,Y.Small-angleX-rayscatteringstudyofthepulleyeffectofslide-ringgels.Macromolecules2006, 37,7386−7391..
Huang,L.Z.;Song,K.;Yang,C.W.;Han,J.J.;Yang,T.T.;Xu,J.Z.;Sun,G.A.;Li,Z.M.;Liu,D.Elongationinduceddemonstrationofthefractiondependentfillernetworkstructuresinsiliconerubber:an in situSAXSstudy.Polymer2023, 274,125926..
0
浏览量
4
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构