Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
katja.gasilova@gmail.com
Scan for full text
Gasilova, E. R.; Poshina, D. N.; Sitnikova, A. O.; Saprykina, N. N.; Skorik, Y. A. Polyelectrolyte complexes between hyperbranched and linear polysaccharides: fucoidan/chitosan. Chinese J. Polym. Sci. 2024, 42, 468–479
Ekaterina R. Gasilova, Daria N. Poshina, Aleksandra O. Sitnikova, et al. Polyelectrolyte Complexes between Hyperbranched and Linear Polysaccharides: Fucoidan/Chitosan[J]. Chinese Journal of Polymer Science, 2024,42(4):468-479.
Gasilova, E. R.; Poshina, D. N.; Sitnikova, A. O.; Saprykina, N. N.; Skorik, Y. A. Polyelectrolyte complexes between hyperbranched and linear polysaccharides: fucoidan/chitosan. Chinese J. Polym. Sci. 2024, 42, 468–479 DOI: 10.1007/s10118-024-3069-9.
Ekaterina R. Gasilova, Daria N. Poshina, Aleksandra O. Sitnikova, et al. Polyelectrolyte Complexes between Hyperbranched and Linear Polysaccharides: Fucoidan/Chitosan[J]. Chinese Journal of Polymer Science, 2024,42(4):468-479. DOI: 10.1007/s10118-024-3069-9.
Internal structure
size
and mobility of nanoparticles formed by polyelectrolyte complexation between large macromolecules of hyperbranched anionic polysaccharide fucoidan and several chitosans (smaller linear cationic polysaccharides) were studied in dilute solutions by light scattering methods (SLS
DLS
and EDS) and by SEM and AFM in a dry state.
Polyelectrolyte complexes (PECs) of hyperbranched (HB) and linear polysaccharides are promising as more effective encapsulation agents compared to PECs formed by linear polysaccharides. We investigated the PECs between the HB anionic polysaccharide fucoidan (FUC) and the cationic linear polysaccharide chitosan (CS). The FUC had a molecular weight (MW) of 30×10
6
. The PECs were prepared in three solvents (water
0.01 and 0.1 mol/L acetic acid) with CS of MW of 15
110 and 170 kDa
and deacetylation degrees (DDA) of 70% and 97%. The structures of the PECs and the initial FUC were investigated by multi-angle static and dynamic light scattering. As the FUC contained 18 wt% of ―OSO
3
groups and 5 wt% of uronic acid units
it was a "strong-weak" copolyanion
so the HB macromolecules of the FUC formed nanogel particles in 0.1 mol/L AcOH and open branched structures in water
as confirmed by the Kratky plots. After mixing the solutions of original components
the PEC structures underwent an equilibration period
the duration of which increased with the MW of CS. As the charge stoichiometry was approached
the PECs shrank; the fractal dimension approached unity
indicating the side-by-side packing of adjacent FUC branches with the help of CS. Secondary aggregation in the vicinity of the charge compensation was hardly observed
as it occurred in a very narrow region. The PEC content at the
ζ
-potential inversion depended on solvents’ pH and the DDA of CS. In the extreme case of core-shell PECs in 0.1 mol/L AcOH
obtained by mixing FUC nanogels with the solutions of high MW CS of 97% DDA
the protruding tails of CS formed a positively charged shell in the whole range of FUC content (10 wt%
<
W
FUC
<
90 wt%). Scanning electron microscopy and atomic force microscopy images of dried samples were discussed in relation to the light scattering results.
Polyelectrolyte complexesChitosanHyperbranched fucoidanLight scattering
Lankalapalli, S.; Kolapalli, V. R. M. Polyelectrolyte complexes: a review of their applicability in drug delivery technology.Indian J. Pharm. Sci.2009, 71, 481−487..
Jagtap, P.; Patil, K.; Dhatrak, P. Polyelectrolyte complex for drug delivery in biomedical applications: a review.IOP Conf. Ser. Mater. Sci. Eng.2021, 1183, 012007,.
Lee, E.J.; Lim, K. H. Formation of chitosan-fucoidan nanoparticles and their electrostatic interactions: quantitative analysis.J. Biosci. Bioeng.2016, 121, 73−83..
Tapia, C.; Escobar, Z.; Costa, E.; Sapag-Hagar, J.; Valenzuela, F.; Basualto, C.; Gai, M. N.; Yazdani-Pedram, M. Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazem clorhydrate release systems.Eur. J. Pharm. Biopharm.2004, 57, 65−75..
De la Torre, P.M.; Enobakhare, Y.; Torrado, G.; Torrado, S. Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid) study of polymer/polymer and polymer/drug interactions within the network structure.Biomaterials2003, 24, 1499−1506..
Kulkarni, A. D.; Vanjari, Y. H.; Sancheti, K. H.; Patel, H. M.; Belgamwar, V. S.; Surana, S. J.; Pardeshi, C. V. Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications.Artif. Cells, Nanomedicine Biotechnol.2016, 44, 1615−1625..
Stiriba, S.E.; Kautz, H.; Frey, H. Hyperbranched molecular nanocapsules: comparison of the hyperbranched architecture with the perfect linear analogue.J. Am. Chem. Soc. 2002 ,124. doi:10.1021/ja026835m..
Jeon, I. Y.; Noh, H. J.; Baek, J. B. Hyperbranched macromolecules: from synthesis to applications.Molecules2018, 23, 1−21..
Pergushov, D. V.; Borisov, O. V.; Zezin, A. B.; Müller, A. H. E. Interpolyelectrolyte complexes based on polyionic species of branched topology.Adv. Polym. Sci.2011, 241, 131−161..
10. Carnal, F.; Laguecir, A.; Stoll, S. Simulations and scattering functions of polyelectrolyte–macroion complexes.Colloid Polym. Sci.2004, 283, 317−328..
Kłos, J. S.; Sommer, J. U. Simulation of complexes between a charged dendrimer and a linear polyelectrolyte with finite rigidity.Macromol. Theory Simulations2012, 21, 448−460..
Lyulin, S.; Karatasos, K.; Darinskii, A.; Larin, S.; Lyulin, A. Structural effects in overcharging in complexes of hyperbranched polymers with linear polyelectrolytes.Soft Matter2008, 4, 453−457..
Dalakoglou, G.; Karatasos, K.; Lyulin, S.; Larin, S.; Darinskii, A.; Lyulin, A. Conformational effects in non-stoichiometric complexes of two hyperbranched molecules with a linear polyelectrolyte.Polymers2012, 4, 240−255..
Störkle, D.; Duschner, S.; Heimann, N.; Maskos, M; Schmidt, M. Complex formation of DNA with oppositely charged polyelectrolytes of different chain topology: cylindrical brushes and dendrimers.Macromolecules2007, 40, 7998−8006..
Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched polymers: advances from synthesis to applications.Chem. Soc. Rev.2015, 44, 4091−4130..
Hao, N.; Duan, X.; Yang, H.; Umair, A.; Zhu, M.; Zaheer, M.; Yang, J.; Li, L. How does the branching effect of macromonomer influence the polymerization, structural features, and solution properties of long-subchain hyperbranched polymers.Macromolecules2019, 52, 1065−1082..
Choi, Y.; Thomas, T.; Kotlyar, A.; Islam, M. T.; Baker, J. R. Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting.Chem. Biol.2005, 12, 35−43..
Eichman, J. D.; Bielinska, A. U.; Kukowska-Latallo, J. F.; Baker, J. R. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells.Pharm. Sci. Technol. Today2000, 3, 232−245..
Nandy, B.; Maiti, P. K. DNA compaction by a dendrimer.J. Phys. Chem. B2011, 115, 217−230..
Selianitis, D.; Katifelis, H.; Gazouli, M. Novel multi-responsive hyperbranched polyelectrolyte polyplexes as potential gene delivery vectors.Pharmaceutics2023, 15, 1627..
Chen, L.; Ge, M. D.; Zhu, Y. J.; Song, Y.; Cheung, P. C. K.; Zhang, B. B.; Liu, L. M. Structure, bioactivity and applications of natural hyperbranched polysaccharides.Carbohydr. Polym.2019, 223, 115076,.
Wei, X.; Cai, L.; Liu, H.; Tu, H.; Xu, X.; Zhou, F.; Zhang, L. Chain conformation and biological activities of hyperbranched fucoidan derived from brown algae and its desulfated derivative.Carbohydr. Polym.2019, 208, 86−96..
Zayed, A.; El-Aasr, M.; Ibrahim, A. R. S.; Ulber, R. Fucoidan characterization: determination of purity and physicochemical and chemical properties.Mar. Drugs2020, 18, 1−31..
Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: structure and bioactivity.Molecules2008, 13, 1671−1695..
Gasilova, E. R.; Lapina, I. M.; Kulminskaya, A. A.; Skorik, Y. A. Branched architecture of fucoidan characterized by dynamic and static light scattering.Colloid Polym. Sci.2020, 298, 1349−1359..
Dubashynskaya, N. V.; Gasilova, E. R.; Skorik, Y. A. Nano-sized fucoidan interpolyelectrolyte complexes: recent advances in design and prospects for biomedical applications.Int. J. Mol. Sci.2023, 24, 2615,.
Tian, M.; Tan, H.; Li, H.; You, C. Molecular weight dependence of structure and properties of chitosan oligomers.RSC Adv.2015, 5, 69445−69452..
Pogodina, N. V.; Pavlov, G.M.; Bushin, S. V.; Mel’nikov, A. B.; Lysenko, Y. B.; Nud’ga, L. A.; Marsheva, V. N.; Marchenko, G. N.; Tsvetkov, V. N. Conformational characteristics of chitosan molecules as demonstrated by diffusion-sedimentation analysis and viscometry.Polym. Sci. U.S.S.R.1986, 28, 251−259..
Ayrapetyan, O. N.; Obluchinskaya, E. D.; Zhurishkina, E. V.; Skorik, Y. A.; Lebedev, D. V.; Kulminskaya, A. A.; Lapina, I. M. Antibacterial properties of fucoidans from the Brown Algae Fucus Vesiculosus l. of the Barents Sea.Biology2021, 10, 1−17..
Jurjiu, A.; Dockhorn, R.; Mironova, O.; Sommer, J. U. Two universality classes for random hyperbranched polymers.Soft Matter2014, 10, 4935−4946..
Rolland-Sabaté, A.; Colonna, P.; Mendez-Montealvo, M. G.; Planchot, V. Branching features of amylopectins and glycogen determined by asymmetrical flow field flow fractionation coupled with multiangle laser light scattering.Biomacromolecules2007, 8, 2520−2532..
Galinsky, G.; Burchard, W. Starch fractions as examples for nonrandomly branched macromolecules. 4. Angular dependence in dynamic light scattering.Macromolecules1997, 30, 6966−6973..
Zhurishkina, E. V.; Stepanov, S. I.; Shvetsova, S. V.; Kulminskaya, A. A.; Lapina, I. M. A comparison of the effect of fucoidan from alga fucus vesiculosus and its fractions obtained by anion-exchange chromatography on HeLa G-63, Hep G2, and chang liver cells.Cell Tissue biol.2017, 11, 242−249..
Teraoka, I. inPolymer Solutioins: an Introduction to Physical Properties. John Wiley&amp; Sons: New York,2022..
Burchard, W. Solution properties of branched macromolecules.Adv. Polym. Sci.1999, 143, 114−194..
Burchard, W. Particle scattering factors of some branched polymers.Macromolecules1977, 10, 919−927..
Hammouda, B. Form factors for branched polymers with excluded volume.J. Res. Natl. Inst. Stand. Technol.2016, 121, 139−164..
Burchard, W. Angular dependence of scattered light from hyperbranched structures in a good solvent. A fractal approach.Macromolecules2004, 37, 3841−3849..
Pandav, G.; Ganesan, V. Computer simulations of dendrimer and polyelectrolyte complexes.J. Phys. Chem. B2014, 118, 10297−310..
Welch, P.; Muthukumar, M. Dendrimer-polyelectrolyte complexation: a model guest-host system.Macromolecules2000, 33, 6159−6167..
Lyulin, S. V.; Darinskii, A. A.; Lyulin, A. V. Computer simulation of complexes of dendrimers with linear polyelectrolytes.Macromolecules2005, 38, 3990−3998..
Raik, S.V.; Gasilova, E.R.; Dubashynskaya, N. V.; Dobrodumov, A. V.; Skorik, Y. A. Diethylaminoethyl chitosan-hyaluronic acid polyelectrolyte complexes.Int. J. Biol. Macromol.2020, 146, 1161−1168..
Felberg, L. E.; Doshi, A.; Hura, G. L.; Sly, J.; Piunova, V. A.; Swope, W. C.; Rice, J. E.; Miller, R.; Head-Gordon, T. Structural transition of nanogel star polymers with pH by controlling PEGMA interactions with acid or base copolymers.Mol. Phys.2016, 114, 3221−3231..
Gasilova, E. R.; Aleksandrova, G. P.; Tyshkunova, I. V Colloidal nanoparticles of sodium polygalacturonate prepared by nanoprecipitation.Carbohydr. Polym.2022, 291, 119521..
Roger, P.; Bello-Perez, L.A.; Colonna, P. Contribution of amylose and amylopectin to the light scattering behaviour of starches in aqueous solution.Polymer1999, 40, 6897−6909..
de Gennes, P. G. Quasi-elastic scattering of neutrons by dilute polymer solutions: I. Free-draining limit.Phys. Phys. Fiz.1967, 3, 37−45..
de Gennes, J. P., inScaling Concepts in Polymer Physics. 1979 ..
Zhu, M.; Waqas, M.; Li, L. Advances in experimental studies of internal motions of non-linear macromolecular systems in solutions.Polymer 2022 ,253.124966..
Trappe, V.; Bauer, J.; Weissmüller, M.; Burchard, W. Angular dependence in static and dynamic light scattering from randomly branched systems.Macromolecules1997, 30, 2365−2372..
0
浏览量
102
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构