Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
jlin@ecust.edu.cn (J.P.L.)
lq_wang@ecust.edu.cn (L.Q.W.)
Scan for full text
Zhang, S. Q.; Wang, W. Q.; Lin, J. P.; Wang, L. Q. Rheological behaviors of polymers with nanoparticles tethered at each end. Chinese J. Polym. Sci. 2024, 42, 400–406
Song-Qi Zhang, Wen-Qing Wang, Jia-Ping Lin, et al. Rheological Behaviors of Polymers with Nanoparticles Tethered at Each End[J]. Chinese Journal of Polymer Science, 2024,42(3):400-406.
Zhang, S. Q.; Wang, W. Q.; Lin, J. P.; Wang, L. Q. Rheological behaviors of polymers with nanoparticles tethered at each end. Chinese J. Polym. Sci. 2024, 42, 400–406 DOI: 10.1007/s10118-023-3052-x.
Song-Qi Zhang, Wen-Qing Wang, Jia-Ping Lin, et al. Rheological Behaviors of Polymers with Nanoparticles Tethered at Each End[J]. Chinese Journal of Polymer Science, 2024,42(3):400-406. DOI: 10.1007/s10118-023-3052-x.
The nanoparticles at the ends can retard the polymer motion and influence the rheological behavior, where the moduli are less dependent on the frequency as the polymer chain shortens or the nanoparticle becomes large.
The polymer with nanoparticles tethered at each end is a unique model for unraveling the effect of chain ends on the polymer dynamics. We investigated the rheological behavior of this kind of polymer by using nonequilibrium molecular dynamics simulation. The effect of polymer lengths and nanoparticle radii on the complex moduli and viscosity was examined. The dependence of complex moduli on the frequency becomes less pronounced as the polymer is short or the nanoparticle is large. The shear thinning behavior was revealed for these systems, and the scaling exponent of complex viscosity with respect to the frequency was found to change from −1/2 to −3/4 as the polymer shortens or the nanoparticle enlarges. The rheological behavior was further explained by analyzing the mean square distance of nanoparticles. The simulation results were compared with the existing experimental finding, showing an agreement. The work provides information for understanding the chain end effect on polymer rheology.
Polymer rheologyModulusViscosityMolecular dynamics
Balazs,A.C.;Emrick,T.;Russell,T.P.Nanoparticlepolymercomposites:wheretwosmallworldsmeet.Science2006, 314,1107−1110..
Kumar,S.K.;Benicewicz,B.C.;Vaia,R.A.;Winey,K.I.50thAnniversaryperspective:arepolymernanocompositespracticalforapplications?Macromolecules2017, 50,714−731..
Shukla,P.;Saxena,P.Polymernanocompositesinsensorapplications:areviewonpresenttrendsandfuturescope.Chinese J. Polym. Sci.2021, 39,665−691..
Yan,M.;Zhang,Y.T.;Wang,X.H.Nanoparticle-filledABCstartriblockcopolymers:adissipativeparticledynamicsstudy.Chinese J. Polym. Sci.2023, 41,1462−1476..
Lungova,M.;Krutyeva,M.;Pyckhout-Hintzen,W.;Wischnewski,A.;Monkenbusch,M.;Allgaier,J.;Ohl,M.;Sharp,M.;Richter,D.Nanoscalemotionofsoftnanoparticlesinunentangledandentangledpolymermatrices.Phys. Rev. Lett.2016, 117,147803..
Wang,L.;Ma,J.;Hong,W.;Zhang,H.;Lin,J.Nanoscalediffusionofpolymer-graftednanoparticlesinentangledpolymermelts.Macromolecules2020, 53,8393−8399..
Hu,S.N.;Lin,Y.;Wu,G.Z.Nanoparticledispersionandglasstransitionbehaviorofpolyimide-graftedsilicananocomposites.Chinese J. Polym. Sci.2020, 38,100−108..
Medidhi,K.R.;Padmanabhan,V.Diffusionofpolymer-graftednanoparticlesinahomopolymermatrix.J. Chem. Phys.2019, 150,044905..
Luo,Y.L.;Duan,X.H.;Li,B.;Chen,X.L.;Gao,Y.Y.;Zhang,L.Q.Tuningtheelectricallyconductivenetworkofgraftednanoparticlesinpolymernanocompositesbytheshearfield.Chinese J. Polym. Sci.2020, 38,1426−1434..
Ge,T.;Rubinstein,M.Mobilityofpolymer-tetherednanoparticlesinunentangledpolymermelts.Macromolecules2019, 52,1536−1545..
Hoshino,T.;Murakami,D.;Tanaka,Y.;Takata,M.;Jinnai,H.;Takahara,A.Dynamicalcrossoverbetweenhyperdiffusionandsubdiffusionofpolymer-graftednanoparticlesinapolymermatrix.Phys. Rev. E2013, 88,032602..
Liu,S.;Senses,E.;Jiao,Y.;Narayanan,S.;Akcora,P.Structureandentanglementfactorsondynamicsofpolymer-graftednanoparticles.ACS Macro Lett.2016, 5,569−573..
Lin,C.;Griffin,P.J.;Chao,H.;Hore,M.J.A.;Ohno,K.;Clarke,N.;Riggleman,R.A.;Winey,K.I.;Composto,R.J.Graftedpolymerchainssuppressnanoparticlediffusioninathermalpolymermelts.J. Chem. Phys.2017, 146,203332..
Ge,T.ScalingPerspectiveondynamicsofnanoparticlesinpolymers:length-andtime-scaledependentnanoparticle–polymercoupling.Macromolecules2023, 56,3809−3837..
Zhang,X.;Wei,W.;Xiong,H.Hierarchicaldynamicsofnonstickymolecularnanoparticle-tetheredpolymers:endandtopologyeffect.Macromolecules2022, 55,3637−3649..
Doi,M.;Edwards,S.F.InThe Theory of polymer dynamics,OxfordUniversityPress:NewYork, 1988 ..
Rubinstein,M.;Colby,R.H.InPolymer Physics,OxfordUniversityPress:NewYork, 2003 ..
Fetters,L.J.;Graessley,W.W.;Hadjichristidis,N.;Kiss,A.D.;Pearson,D.S.;Younghouse,L.B.Associationbehaviorofend-functionalizedpolymers.2.Meltrheologyofpolyisopreneswithcarboxylate,amine,andzwitterionendgroups.Macromolecules1988, 21,1644−1653..
Xing,K.;Tress,M.;Cao,P.F.;Fan,F.;Cheng,S.;Saito,T.;Sokolov,A.P.Theroleofchain-endassociationlifetimeinsegmentalandchaindynamicsoftelechelicpolymers.Macromolecules2018, 51,8561−8573..
Ge,T.;Rubinstein,M.;Grest,G.S.Effectsoftetheredpolymersondynamicsofnanoparticlesinunentangledpolymermelts.Macromolecules2020, 53,6898−6906..
Lund,R.;Plaza-García,S.;Alegría,A.;Colmenero,J.;Janoski,J.;Chowdhury,S.R.;Quirk,R.P.PolymerDynamicsofwell-defined,chain-end-functionalizedpolystyrenesbydielectricspectroscopy.Macromolecules2009, 42,8875−8881..
Miwa,Y.;Yamamoto,K.;Sakaguchi,M.;Sakai,M.;Makita,S.;Shimada,S.Directdetectionofhighmobilityaroundchainendsofpoly(methylmethacrylate)bythespin-labeling.Macromolecules2005, 38,832−838..
Wang,W.;Wang,L.Moleculardynamicssimulationofpolymerswithnanoparticlestetheredattwoends.Acta Polymerica Sinica(inChinese),2023, 54,1935−1942..
Evans,D.J.Rheologyandthermodynamicsfromnonequilibriummoleculardynamics.Int. J. Thermophys.1986, 7,573−584..
Li,Z.;Djohari,H.;Dormidontova,E.E.Moleculardynamicssimulationsofsupramolecularpolymerrheology.J. Chem. Phys.2010, 133,184904..
Duquesnoy,M.,Lombardo,T.,Caro,F.;Haudiquez,F.;Ngandjong,A.C.;Xu,J.;Oularbi,H.;Franco,A.A.Functionaldata-drivenframeworkforfastforecastingofelectrodeslurryrheologysimulatedbymoleculardynamics.npj Comput. Mater. 2022 ,8,No.161..
Nikoubashman,A.;Howard,M.P.Equilibriumdynamicsandshearrheologyofsemiflexiblepolymersinsolution.Macromolecules2017, 50,8279−8289..
Zhu,H.;Zhang,S.;Li,X.;Ma,D.;Sun,X.;Wang,Z.H.;Yan,Y.;Xu,J.;Yang,C.Moleculardynamicssimulationrevealsuniquerheologicalandviscosity–temperaturepropertiesofkaramayheavycrudeoil.Energy Fuels2021, 35,7956−7966..
Hong,W.;Lin,J.;Tian,X.;Wang,L.Distinctviscoelasticityofhierarchicalnanostructuresself-assembledfrommultiblockcopolymers.Macromolecules2020, 53,10955−10963..
Hong,W.;Lin,J.;Tian,X.;Wang,L.Viscoelasticityofnanosheet-filledpolymercomposites:threeregimesintheenhancementofmoduli.J. Phys. Chem. B2020, 124,6437−6447..
Peng,Y.;Yue,T.;Li,S.;Gao,K.;Wang,Y.;Li,Z.;Ye,X.;Zhang,L.;Liu,J.Rheologicalandstructuralpropertiesofassociatedpolymernetworksstudied vianon-equilibriummoleculardynamicssimulation.Mol. Syst. Des. Eng.2021, 6,461−475..
LAMMPSMolecularDynamicsSimulator.https://lammps.sandia.gov/.(AccessedAugust12023).
Lees,A.;Edwards,S.Thecomputerstudyoftransportprocessesunderextremeconditions.J. Phys. C: Solid State Phys.1972, 5,1921..
Payne,A.R.Thedynamicpropertiesofcarbonblack-loadednaturalrubbervulcanizates.PartI.J. Appl. Polym. Sci.1962, 6,57−63..
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构