a.Advanced Materials Research Institute, North China Electric Power University, Beijing 102206, China
b.Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
c.Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
d.School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
guobing2020@hit.edu.cn (B.G.)
xuezy@ncepu.edu.cn (Z.Y.X.)
czzhu@szu.edu.cn (C.Z.Z.)
Scan for full text
Zhao, C. B.; Feng, L. K.; Xie, H; Wang, M. L.; Guo, B.; Xue, Z. Y.; Zhu, C. Z.; Xu, J. High-performance recyclable furan-based epoxy resin and its carbon fiber composites with dense hydrogen bonding. Chinese J. Polym. Sci. 2024, 42, 73–86
Chang-Bo Zhao, Lu-Kun Feng, Hui Xie, et al. High-Performance Recyclable Furan-based Epoxy Resin and Its Carbon Fiber Composites with Dense Hydrogen Bonding[J]. Chinese Journal of Polymer Science, 2024,42(1):73-86.
Zhao, C. B.; Feng, L. K.; Xie, H; Wang, M. L.; Guo, B.; Xue, Z. Y.; Zhu, C. Z.; Xu, J. High-performance recyclable furan-based epoxy resin and its carbon fiber composites with dense hydrogen bonding. Chinese J. Polym. Sci. 2024, 42, 73–86 DOI: 10.1007/s10118-023-3045-9.
Chang-Bo Zhao, Lu-Kun Feng, Hui Xie, et al. High-Performance Recyclable Furan-based Epoxy Resin and Its Carbon Fiber Composites with Dense Hydrogen Bonding[J]. Chinese Journal of Polymer Science, 2024,42(1):73-86. DOI: 10.1007/s10118-023-3045-9.
A new monomer (FCN) containing furan and Schiff base structure was designed to formulate recyclable and high-performance epoxy resins with high density of hydrogen bonding, while the resin performance was further examined in carbon-fiber composites.
The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society. Since the existence of dynamic chemical bonds in vitrimers often reduces both the thermal and mechanical properties of epoxy resins, it is challenging to produce recyclable epoxy vitrimers with both excellent mechanical properties and good thermal stability. Herein, a monomer 4-(((5-(hydroxymethyl)furan-2-yl)methylene)amino)phenol (FCN) containing furan ring with potential to form high density of hydrogen bonding among repeating units is designed and copolymerized with glycerol triglycidyl ether to yield epoxy resin (FCN-GTE), which intrinsically has dual hydrogen bond networks, dynamic imine structure and resultant high performance. Importantly, as compared to the BPA-GTE, the FCN-GTE exhibits significantly improved mechanical properties owing to the increased density of hydrogen bond network and physical crosslinking interaction. Furthermore, density functional theory (DFT) calculation and ,in situ, FTIR analysis is conducted to decipher the formation mechanism of hydrogen bond network. In addition, the FCN-GTE possesses superior UV shielding, chemical degradation, and recyclability because of the existence of abundant imine bonds. Notably, the FCN-GTE-based carbon fiber composites could be completely recycled in an amine solution. This study provides a facile strategy for synthesizing recyclable biomass-based high-performance epoxy vitrimers and carbon fiber composites.
FuranHydrogen bond networkDynamic Schiff baseCarbon fiber compositesRecycling
Filippidi,E.;Cristiani,T.R.;Eisenbach,C.D.;Waite,J.H.;Israelachvili,J.N.;Ahn,B.K.;Valentine,M.T.Tougheningelastomersusingmusselinspirediron-catecholcomplexes.Science2017,358,502–505..
deKruijff,G.H.M.;Goschler,T.;Beiser,N.;Stenglein,A.;Türk,O.M.;Waldvogel,S.R.Sustainableaccesstobiobasedbiphenolepoxyresinsbyelectrochemicaldehydrogenativedimerizationofeugenol.Green Chem.2019,21,4815−4823..
Tian,Y.;Wang,Q.;Shen,L.;Cui,Z.;Kou,L.;Cheng,J.;Zhang,J.Arenewableresveratrol-basedepoxyresinwithhighTg,excellentmechanicalpropertiesandlowflammability.Chem. Eng. J.2020,383,123124..
Yu,S.;Zhang,G.;Wu,S.;Tang,Z.;Guo,B.;Zhang,L.Effectsofdynamiccovalentbondmultiplicityontheperformanceofvitrimericelastomers.J. Mater. Chem. A2020,8,20503−20512..
Sun,Y.;Wang,M.;Wang,Z.;Mao,Y.;Jin,L.;Zhang,K.;Xia,Y.;Gao,H.Amine-curedglycidylestersasdualdynamicepoxyvitrimers.Macromolecules2022,55,523−534..
Zou,W.;Dong,J.;Luo,Y.;Zhao,Q.;Xie,T.Dynamiccovalentpolymernetworks:fromoldchemistrytomoderndayinnovations.Adv. Mater.2017,29,1606100..
Yang,Y.;Xu,Y.;Ji,Y.;Wei,Y.Functionalepoxyvitrimersandcomposites.Prog. Mater. Sci.2021,120,100710..
Zhang,J.;Gong,Z.;Wu,C.;Li,T.;Tang,Y.;Wu,J.;Jiang,C.;Miao,M.;Zhang,D.Itaconicacid-basedhyperbranchedpolymertoughenedepoxyresinswithrapidstressrelaxation,superbsolventresistanceandclosed-looprecyclability.Green Chem.2022,24,6900−6911..
Krishnakumar,B.;Sanka,R.V.S.P.;Binder,W.H.;Parthasarthy,V.;Rana,S.;Karak,N.Vitrimers:associativedynamiccovalentadaptivenetworksinthermosetpolymers.Chem. Eng. J.2020,385,123820..
Trinh,T.E.;Ku,K.;Yeo,H.Reprocessableandchemicallyrecyclablehardvitrimersbasedonliquid-crystallineepoxides.Adv. Mater.2023,35,e2209912..
Memon,H.;Liu,H.;Rashid,M.A.;Chen,L.;Jiang,Q.;Zhang,L.;Wei,Y.;Liu,W.;Qiu,Y.Vanillin-basedepoxyvitrimerwithhighperformanceandclosed-looprecyclability.Macromolecules2020,53,621−630..
Thi-Nguyet,T.;DiMauro,C.;Graillot,A.;Mija,A.Chemicalreactivityandtheinfluenceofinitiatorsontheepoxidizedvegetableoil/dicarboxylicacidsystem.Macromolecules2020,53,2526−2538..
Si,H.;Zhou,L.;Wu,Y.;Song,L.;Kang,M.;Zhao,X.;Chen,M.Rapidlyreprocessable,degradableepoxyvitrimerandrecyclablecarbonfiberreinforcedthermosetcompositesreliedonhighcontentsofexchangeablearomaticdisulfidecrosslinks.Compos. Part B: Eng.2020,199,108278..
Xu,Z.;Liang,Y.;Ma,X.;Chen,S.;Yu,C.;Wang,Y.;Zhang,D.;Miao,M.Recyclablethermosethyperbranchedpolymerscontainingreversiblehexahydro-s-triazine.Nat. Sustain.2019,3,29−34..
Wang,B.;Ma,S.;Li,Q.;Zhang,H.;Liu,J.;Wang,R.;Chen,Z.;Xu,X.;Wang,S.;Lu,N.;Liu,Y.;Yan,S.;Zhu,J.Facilesynthesisof"digestible",rigid-and-flexible,bio-basedbuildingblockforhigh-performancedegradablethermosettingplastics.Green Chem.2020,22,1275−1290..
Warlin,N.;GarciaGonzalez,M.N.;Mankar,S.;Valsange,N.G.;Sayed,M.;Pyo,S.H.;Rehnberg,N.;Lundmark,S.;Hatti-Kaul,R.;Jannasch,P.;Zhang,B.Arigidspirocyclicdiolfromfructose-based5-hydroxymethylfurfural:synthesis,life-cycleassessment,andpolymerizationforrenewablepolyestersandpoly(urethane-urea)s.Green Chem.2019,21,6667−6684..
Chen,Y.;Tang,Z.;Liu,Y.;Wu,S.;Guo,B.Mechanicallyrobust,self-healable,andreprocessableelastomersenabledbydynamicdualcross-links.Macromolecules2019,52,3805−3812..
Röttger,M.;Domenech,T.;vanderWeegen,R.;Nicolaÿ,A.B.R.;Leibler,L.High-performancevitrimersfromcommoditythermoplasticsthroughdioxaborolanemetathesis.Science2017,356,62−65..
Montarnal,D.;Capelot,M.;Tournilhac,F.;Leibler,L.Silica-likemalleablematerialsfrompermanentorganicnetworks.Science2011,334,965−968..
Pei,Z.;Yang,Y.;Chen,Q.;Wei,Y.;Ji,Y.Regionalshapecontrolofstrategicallyassembledmultishapememoryvitrimers.Adv. Mater.2016,28,156−160..
Kawai,K.;Ikeda,K.;Sato,A.;Kabasawa,A.;Kojima,M.;Kokado,K.;Kakugo,A.;Sada,K.;Yoshino,T.;Matsunaga,S.1,2-Disubstituted1,2-dihydro-1,2,4,5-tetrazine-3,6-dioneasadynamiccovalentbondingunitatroomtemperature.J. Am. Chem. Soc.2022,144,1370−1379..
Lu,C.;Liu,Y.;Wang,C.;Yong,Q.;Wang,J.;Chu,F.Anintegratedstrategytofabricatebio-baseddual-cureandtoughenedepoxythermosetswithphotothermalconversionproperty.Chem. Eng. J.2022,433,134582..
Tretbar,C.A.;Neal,J.A.;Guan,Z.B.Directsilylethermetathesisforvitrimerswithexceptionalthermalstability.J. Am. Chem. Soc.2019,141,16595−16599..
Gao,S.;Liu,Y.;Feng,S.;Lu,Z.ReprocessableanddegradablethermosetwithhighTgcross-linkedviaSi–O–Phbonds.J. Mater. Chem. A2019,7,17498−17504..
Ji,S.;Cao,W.;Yu,Y.;Xu,H.Dynamicdiselenidebonds:exchangereactioninducedbyvisiblelightwithoutcatalysis.Angew. Chem. Int. Ed.2014,126,6899−6903..
Liu,X.;Song,X.;Chen,B.;Liu,J.;Feng,Z.;Zhang,W.;Zeng,J.;Liang,L.Self-healingandshape-memoryepoxythermosetsbasedondynamicdiselenidebonds.React. Funct. Polym.2022,170,105121..
Yang,L.;Li,Y.;Du,M.;He,Y.;Lan,Y.;Yin,Q.;Zhu,F.;Chang,G.Force-reversibleandenergeticindole-Mg-indolecation-πinteractionfordesigningtoughenedandmultifunctionalhigh-performancethermosets.Adv. Funct. Mater.2021,32,2111021..
Wang,S.;Ma,S.;Li,Q.;Xu,X.;Wang,B.;Yuan,W.;Zhou,S.;You,S.;Zhu,J.Facileinsitupreparationofhigh-performanceepoxyvitrimerfromrenewableresourcesanditsapplicationinnondestructiverecyclablecarbonfibercomposite.Green Chem.2019,21,1484−1497..
Zhao,S.;Abu-Omar,M.M.Recyclableandmalleableepoxythermosetbearingaromaticiminebonds.Macromolecules2018,51,9816−9824..
Memon,H.;Wei,Y.;Zhu,C.RecyclableandreformableepoxyresinsbasedondynamiccovalentbondsPresent,past,andfuture.Polym. Test.2022,105,107420..
Liu,T.;Hao,C.;Zhang,S.;Yang,X.N.;Wang,L.W.;Han,J.R.;Li,Y.Z.;Xin,J.N.;Zhang,J.W.Aself-healablehighglasstransitiontemperaturebioepoxymaterialbasedonvitrimerchemistry.Macromolecules2018,51,5577−5585..
Xu,X.;Ma,S.;Wu,J.;Yang,J.;Wang,B.;Wang,S.;Li,Q.;Feng,J.;You,S.;Zhu,J.High-performance,command-degradable,antibacterialSchiffbaseepoxythermosets:synthesisandproperties.J. Mater. Chem. A2019,7,15420−15431..
Savonnet,E.;Grau,E.;Grelier,S.;Defoort,B.;Cramail,H.Divanillin-basedepoxyprecursorsasDGEBAsubstitutesforbiobasedepoxythermosets.ACS Sustainable Chem. Eng.2018,6,11008−11017..
Wan,J.;Gan,B.;Li,C.;Molina-Aldareguia,J.;Kalali,E.N.;Wang,X.;Wang,D.-Y.Asustainable,eugenol-derivedepoxyresinwithhighbiobasedcontent,modulus,hardnessandlowflammability:synthesis,curingkineticsandstructure–propertyrelationship.Chem. Eng. J.2016,284,1080−1093..
Qi,Y.;Weng,Z.H.;Zhang,K.W.;Wang,J.Y.;Zhang,S.H.;Liu,C.;Jian,X.G.Magnolol-basedbio-epoxyresinwithacceptableglasstransitiontemperature,processabilityandflameretardancy.Chem. Eng. J.2020,387,124115..
Cao,Q.;Li,J.;Qi,Y.;Zhang,S.;Wang,J.;Wei,Z.;Pang,H.;Jian,X.;Weng,Z.Engineeringdoubleload-sharingnetworkinthermosetting:muchmorethanjusttoughening.Macromolecules2022,21,9502−9512..
Nabipour,H.;Wang,X.;Song,L.;Hu,Y.Ahighperformancefullybio-basedepoxythermosetfromasyringaldehyde-derivedepoxymonomercuredbyfuran-derivedamine.Green Chem.2021,23,501−510..
Zhong,L.;Hao,Y.;Zhang,J.;Wei,F.;Li,T.;Miao,M.;Zhang,D.Closed-looprecyclablefullybio-basedepoxyvitrimersfromferulicacid-derivedhyperbranchedepoxyresin.Macromolecules2022,55,595−607..
Pansumdaeng,J.;Kuntharin,S.;Harnchana,V.;Supanchaiyamat,N.Fullybio-basedepoxidizedsoybeanoilthermosetsforhighperformancetriboelectricnanogenerators.Green Chem.2020,22,6912−6921..
Qi,Y.;Weng,Z.;Kou,Y.;Song,L.;Li,J.;Wang,J.;Zhang,S.;Liu,C.;Jian,X.Synthesizeandintroducebio-basedaromatics-triazineinepoxyresin:enablingextremelyhighthermalstability,mechanicalproperties,andflameretardancytoachievehigh-performancesustainablepolymers.Chem. Eng. J.2021,406,126881..
Cao,Q.;Weng,Z.;Qi,Y.;Li,J.;Liu,W.;Liu,C.;Zhang,S.;Wei,Z.;Chen,Y.;Jian,X.Achievinghigherperformanceswithoutanexternalcuringagentinnaturalmagnolol-basedepoxyresin.Chin. Chem. Lett.2022,33,2195−2199..
Qi,Y.;Weng,Z.;Kou,Y.;Li,J.;Cao,Q.;Wang,J.;Zhang,S.;Jian,X.Facilesynthesisofbio-basedtetra-functionalepoxyresinanditspotentialapplicationashigh-performancecompositeresinmatrix.Compos. Part B: Eng.2021,214,108749..
Lin,J.;Xu,P.;Wang,L.;Sun,Y.;Ge,X.;Li,G.;Yang,X.Multi-scaleinterphaseconstructionofself-assemblynaphthalenediimide/multi-wallcarbonnanotubeandenhancedinterfacialpropertiesofhigh-moduluscarbonfibercomposites.Composi. Sci. Technol.2019,184,107855..
Chappuis,S.;Edera,P.;Cloitre,M.;Tournilhac,F.Enrichinganexchangeablenetworkwithoneofitscomponents:thekeytohigh-Tgepoxyvitrimerswithacceleratedrelaxation.Macromolecules2022,55,6982−6991..
He,J.;Li,L.;Zhou,J.;Tian,J.;Chen,Y.;Zou,H.;Liang,M.Ultra-highmodulusepoxyresinreinforcedbyintensivehydrogenbondnetwork:fromdesign,synthesis,mechanismtoapplications.Compos. Sci. Technol.2023,231,109815..
Liu,Y.Y.;Liu,G.L.;Li,Y.D.;Weng,Y.;Zeng,J.B.Biobasedhigh-performanceepoxyvitrimerwithUVshieldingforrecyclablecarbonfiberreinforcedcomposites.ACS Sustainable Chem. Eng.2021,9,4638−4647..
Liu,Y.Y.;He,J.;Li,Y.D.;Zhao,X.L.;Zeng,J.B.Biobasedepoxyvitrimerfromepoxidizedsoybeanoilforreprocessableandrecyclablecarbonfiberreinforcedcomposite.Compos. Commun.2020,22,100445..
Zhao,X.L.;Liu,Y.Y.;Weng,Y.;Li,Y.D.;Zeng,J.B.Sustainableepoxyvitrimersfromepoxidizedsoybeanoilandvanillin.ACS Sustainable Chem. Eng.2020,8,15020−15029..
Barone,V.;Adamo,C.;Lelj,F.Conformationalbehaviorofgaseousglycinebyadensityfunctionalapproach.J. Chem. Phys.1995,102,364−370..
Becke;Axel,D.AnewmixingofHartree-Fockandlocaldensity-functionaltheories.J. Chem. Phys.1993,98,1372−1377..
Becke;Axel,D.Density-functionalthermochemistry.III.Theroleofexactexchange.J. Chem. Phys.1993,98,5648−5652..
Lee,C.;Yang,W.;Parr,R.DevelopmentoftheColle-Salvetticorrelation-energyformulaintoafunctionaloftheelectrondensity.Phys. Rev. B1988,37,785−789..
Grimme,S.;Ehrlich,S.;Goerigk,L.Effectofthedampingfunctionindispersioncorrecteddensityfunctionaltheory.J. Comput. Chem.2011,32,1456−1465..
Hu,F.;LaScala,J.J.;Sadler,J.M.;Palmese,G.R.Synthesisandcharacterizationofthermosettingfuran-basedepoxysystems.Macromolecules2014,47,3332−3342..
Marotta,A.;Faggio,N.;Ambrogi,V.;Mija,A.;Gentile,G.;Cerruti,P.Biobasedfuran-basedepoxy/TiO2nanocompositesforthepreparationofcoatingswithimprovedchemicalresistance.Chem. Eng. J.2021,406,127107..
Pezzana,L.;Melilli,G.;Guigo,N.;Sbirrazzuoli,N.;Sangermano,M.CationicUVcuringofbioderivedepoxyfuran-basedcoatings:tailoringthefinalpropertiesbyin situformationofhybridnetworkandadditionofmonofunctionalmonomer.ACS Sustainable Chem. Eng.2021,9,17403−17412..
Guo,H.;Huang,S.;Yang,X.;Wu,J.;Kirk,T.B.;Xu,J.;Xu,A.;Xue,W.Injectableandself-healinghydrogelswithdouble-dynamicbondtunablemechanical,gel-soltransitionanddrugdeliverypropertiesforpromotingperiodontiumregenerationinperiodontitis.ACS Appl. Mater. Interfaces2021,13,61638−61652..
Lee,S.H.;Shin,S.R.;Lee,D.S.Self-healingofcross-linkedPUviadual-dynamiccovalentbondsofaSchiffbasefromcystineandvanillin.Mater. Design2019,172,107774..
Zou,Z.;Zhu,C.;Li,Y.;Lei,X.;Zhang,W.;Xiao,J.Rehealable,fullyrecyclable,andmalleableelectronicskinenabledbydynamiccovalentthermosetnanocomposite.Sci. Adv.2018,4,eaaq0508..
Memon,H.;Wei,Y.;Zhu,C.Correlatingthethermomechanicalpropertiesofanovelbio-basedepoxyvitrimerwithitscrosslinkdensity.Mater. Today Commun.2021,29,102814..
Sangroniz,L.;Sangroniz,A.;Alegria,A.;Fernandez,M.;Irusta,L.;Müller,A.J.;Etxeberria,A.;Santamaría,A.Effectofhydrogenbondingonthephysicochemicalandrheologicalfeaturesofchemicallymodifiedphenoxy.Polymer2018,159,12−22..
Coleman,M.M.;Moskala,E.J.FTIRstudiesofpolymerblendscontainingthepoly(hydroxyetherofbisphenolA)andpoly(e-caprolactone).Polymer1983,24,251−257..
Mora,A.S.;Tayouo,R.;Boutevin,B.;David,G.;Caillol,S.AperspectiveapproachontheaminereactivityandtheHydrogenbondseffectonepoxy-aminesystems.Eur. Polym. J.2020,123,109460..
Qi,Y.;Wang,J.;Kou,Y.;Pang,H.;Zhang,S.;Li,N.;Liu,C.;Weng,Z.;Jian,X.SynthesisofanaromaticN-heterocyclederivedfrombiomassanditsuseasapolymerfeedstock.Nat. Commun.2019,10,2107..
Tanaka,Y.;Kakiuchi,H.Studyofepoxycompounds.PartI.Curingreactionsofepoxyresinandacidanhydridewithamineandalcoholascatalyst.J. Appl. Polym. Sci.1963,7,1063−1081..
Liu,Y.;Zhao,J.;Peng,Y.;Luo,J.;Cao,L.;Liu,X.Comparativestudyonthepropertiesofepoxyderivedfromaromaticandheteroaromaticcompounds:theroleofhydrogenbonding.Indust. Eng. Chem. Res.2020,59,1914−1924..
Ma,X.;Liang,Y.;Xu,Z.;Chen,S.;Cheng,J.;Miao,M.;Zhang,D.Theversatilityofhyperbranchedepoxyresinscontaininghexahydro-s-triazineondiglycidyletherofbisphenol-Acomposites.Compos. Part B: Eng.2020,196,108109..
diMauro,C.;Tran,T.N.;Graillot,A.;Mija,A.Enhancingtherecyclabilityofavegetableoil-basedepoxythermosetthroughinitiatorinfluence.ACS Sustainable Chem. Eng.2020,8,7690−7700..
Wang,S.;Ma,S.;Xu,C.;Liu,Y.;Dai,J.;Wang,Z.;Liu,X.;Chen,J.;Shen,X.;Wei,J.;Zhu,J.Vanillin-derivedhigh-performanceflameretardantepoxyresins:facilesynthesisandproperties.Macromolecules2017,50,1892−1901..
Meng,J.;Zeng,Y.;Zhu,G.;Zhang,J.;Chen,P.;Cheng,Y.;Fang,Z.;Guo,K.Sustainablebio-basedfuranepoxyresinwithflameretardancy.Polym. Chem.2019,10,2370−2375..
Jiang,Y.;Ding,D.;Zhao,S.;Zhu,H.;Kenttamaa,H.I.;Abu-Omar,M.M.Renewablethermosetpolymersbasedonligninandcarbohydratederivedmonomers.Green Chem.2018,20,1131−1138..
Zhang,Z.;Lei,D.;Zhang,C.;Wang,Z.;Jin,Y.;Zhang,W.;Liu,X.;Sun,J.Strongandtoughsupramolecularcovalentadaptablenetworkswithroom-temperatureclosed-looprecyclability.Adv. Mater.2023,35,e2208619..
Shen,Y.;Xu,N.;Adraro,Y.A.;Wang,B.;Liu,Y.;Yuan,W.;Xu,X.;Huang,Y.;Hu,Z.Imineorsecondaryamine-deriveddegradablepolyaminal:low-costmatrixresinwithhighperformance.ACS Sustainable Chem. Eng.2020,8,1943−1953..
Wang,S.;Ma,S.Q.;Li,Q.;Yuan,W.C.;Wang,B.B.;Zhu,J.Robust,fire-safe,monomer-recovery,highlymalleablethermosetsfromrenewablebioresources.Macromolecules2018,51,8001−8012..
Yu,Q.Q.;Peng,X.H.;Wang,Y.L.;Geng,H.W.;Xu,A.C.;Zhang,X.;Xu,W.L.;Ye,D.Z.Vanillin-baseddegradableepoxyvitrimers:reprocessabilityandmechanicalpropertiesstudy.Eur. Polym. J.2019,117,55−63..
Chao,A.;Negulescu,I.;Zhang,D.Dynamiccovalentpolymernetworksbasedondegenerativeiminebondexchange:tuningthemalleabilityandself-healingpropertiesbysolvent.Macromolecules2016,49,6277−6284..
Ma,S.;Wei,J.;Jia,Z.;Yu,T.;Yuan,W.;Li,Q.;Wang,S.;You,S.;Liu,R.;Zhu,J.Readilyrecyclable,high-performancethermosettingmaterialsbasedonalignin-derivedspirodiacetaltrigger.J. Mater. Chem. A2019,7,1233−1243..
Belowich,M.E.;Stoddart,J.F.Dynamiciminechemistry.Chem. Soc. Rev.2012,41,2003−2024..
Zhang,Y.;Yang,B.;Zhang,X.;Xu,L.;Tao,L.;Li,S.;Wei,Y.Amagneticself-healinghydrogel.Chem. Commun.2012,48,9305−9307..
Taynton,P.;Yu,K.;Shoemaker,R.K.;Jin,Y.;Qi,H.J.;Zhang,W.Heat-orwater-drivenmalleabilityinahighlyrecyclablecovalentnetworkpolymer.Adv. Mater.2014,26,3938−3942..
Lei,Z.Q.;Xie,P.;Rong,M.Z.;Zhang,M.Q.Catalyst-freedynamicexchangeofaromaticSchiffbasebondsanditsapplicationtoself-healingandremoldingofcrosslinkedpolymers.J. Mater. Chem. A2015,3,19662−19668..
Kathan,M.;Kovaricek,P.;Jurissek,C.;Senf,A.;Dallmann,A.;Thunemann,A.F.;Hecht,S.Controlofimineexchangekineticswithphotoswitchestomodulateself-healinginpolysiloxanenetworksbylightillumination.Angew. Chem. Int. Ed.2016,55,13882−13886..
Taynton,P.;Ni,H.;Zhu,C.;Yu,K.;Loob,S.;Jin,Y.;Qi,H.J.;Zhang,W.Repairablewovencarbonfibercompositeswithfullrecyclabilityenabledbymalleablepolyiminenetworks.Adv. Mater.2016,28,2904−2909..
0
浏览量
15
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构