a.Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
b.State Key Laboratory of Radiation Medicine and Protection; School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu, Soochow University, Suzhou 215123, China
wwhe@suda.edu.cn (W.W.H.)
zhanglifen@suda.edu.cn (L.F.Z.)
chengzhenping@suda.edu.cn (Z.P.C.)
Scan for full text
Zou, Z.; Xu, X.; Zhao, H. T; Cheng, J. N.; He, W. W.; Zhang, L. F.; Cheng, Z. P. Manipulating the phase transition behavior of dual temperature-responsive block copolymers by adjusting composition and sequence. Chinese J. Polym. Sci. 2024, 42, 176–187
Zhi Zou, Xiang Xu, Hai-Tao Zhao, et al. Manipulating the Phase Transition Behavior of Dual Temperature-Responsive Block Copolymers by Adjusting Composition and Sequence[J]. Chinese Journal of Polymer Science, 2024,42(2):176-187.
Zou, Z.; Xu, X.; Zhao, H. T; Cheng, J. N.; He, W. W.; Zhang, L. F.; Cheng, Z. P. Manipulating the phase transition behavior of dual temperature-responsive block copolymers by adjusting composition and sequence. Chinese J. Polym. Sci. 2024, 42, 176–187 DOI: 10.1007/s10118-023-3041-0.
Zhi Zou, Xiang Xu, Hai-Tao Zhao, et al. Manipulating the Phase Transition Behavior of Dual Temperature-Responsive Block Copolymers by Adjusting Composition and Sequence[J]. Chinese Journal of Polymer Science, 2024,42(2):176-187. DOI: 10.1007/s10118-023-3041-0.
A series block copolymers with controlled both UCST and LCST-type segments were synthesized and the effects on the phase transition behaviors were investigated in detail including not only concentration, pH but also the composition and sequence by incorporation of PAA or PBN segments in different manners.
Temperature-responsive polymers have garnered significant attention due to their ability to respond to external stimuli. In this work, dual temperature-responsive block copolymers are synthesized ,via, reversible addition-fragmentation chain transfer polymerization (RAFT) polymerization utilizing zwitterionic monomer methacryloyl ethyl sulfobetaine (SBMA) and ,N,-isopropyl acrylamide (NIPAAm) as monomers. The thermal responsive behaviors can be easily modulated by incorporating additional hydrophobic monomer benzyl acrylate (BN) or hydrophilic monomer acrylic acid (AA), adjusting concentration or pH, or varying the degree of polymerization of the block chain segments. The cloud points of the copolymers are determined by UV-Vis spectrophotometry, and these copolymers exhibit both controlled upper and lower critical solubility temperatures (LCST and UCST) in aqueous solution. This study analyzes and summarizes the influencing factors of dual temperature responsive block copolymers by exploring the effects of various conditions on the phase transition temperature of temperature-sensitive polymers to explore the relationship between their properties and environment and structure to make them more selective in terms of temperature application range and regulation laws. It is very interesting that the introduction of poly-acrylic acid (PAA) segments in the middle of di-block copolymer PSBMA,55,-b-,PNIPAAm,80, to form PSBMA,55,-b-,PAA,x,-b-,PNIPAAm,80, results in a reversal of temperature-responsive behaviors from ‘U’ (LCST ,<, UCST) to ‘n’ (LCST ,>, UCST) type, while the copolymer PSBMA,55,-b,-P(NIPAAm,80,-,co,-AA,x,) not. This work provides a clue for tuning the phase transition behavior of polymers for manufacture of extreme smart materials.
Temperature responsive polymersHigh critical solubility temperature (UCST)Low critical solubility temperature (LCST)Block copolymers
Hirayama,S.;Oohora,K.;Uchihashi,T.;Hayashi,T.Thermoresponsivemicellarassemblyconstructedfromahexamerichemoproteinmodifiedwithpoly( N-isopropylacrylamide)towardanartificiallight-harvestingsystem.J. Am. Chem. Soc.2020, 142,1822−1831..
Chen,Y.;Tong,J.;Dong,J.;Luo,J.;Liu,X.Atemperature-responsiveboronatecorecross-linkedstar(CCS)polymerforfastandhighlyefficientenrichmentofglycoproteins.Small2019, 15,1900099..
Zhang,Z.;Collum,D.B.Structuresandreactivitiesofsodiatedevansenolates:roleofsolvationandmixedaggregationonthestereochemistryandmechanismofalkylations.J. Am. Chem. Soc.2019, 141,388−401..
Miao,Z.;Kubo,T.;Pal,D.;Sumerlin,B.S.;Veige,A.S.pH-responsivewater-solublecyclicpolymer.Macromolecules2019, 52,6260−6265..
Zhao,Y.;Zhu,W.;Wu,Y.;Qu,L.;Liu,Z.;Zhang,K.Anaggregation-inducedemissionstarpolymerwithpHandmetalionresponsivefluorescence.Polym. Chem.2016, 7,6513−6520..
ChenR.;JiangX.;LuG.;LiuW.;JinW.;TianG.;HuangX.Awell-definedthermo-andpH-responsivedoublehydrophilicgraftcopolymerbearingpyridine-containingbackbone.Polym. Chem.2022, 13,2791−2802..
Zhou,Y.;Tan,J.;Chong,D.;Wan,X.;Zhang,J.Rapidnear-infraredlightresponsiveshapememorypolymerhybridsandnovelchiralactuatorsbasedonphotothermalW18O49nanowires.Adv. Funct. Mater.2019, 29,1901202..
Pantuso,E.;Filpo,G.;Nicoletta,F.P.Light-responsivepolymermembranes.Adv. Opt. Mater.2019, 7,1900252..
Dong,Y.Z.;Kwon,S.H.;Choi,H.J.;Puthiaraj,P.;Ahn,W.S.Electroresponsivepolymer-inorganicsemiconductingcomposite(MCTP-Fe3O4)particlesandtheirelectrorheology.ACS Omega2018, 3,17246−17253..
Servant,A.;Methven,L.;Williams,R.P.;Kostarelos,K.Electroresponsivepolymer-carbonnanotubehydrogelhybridsforpulsatiledrugdelivery in vivo.Adv. Healthc. Mater.2013, 2,806−811..
Qiu,N.;Gao,J.;Liu,Q.;Wang,J.;Shen,Y.Enzyme-responsivecharge-reversalpolymer-mediatedeffectivegenetherapyforintraperitonealtumors.Biomacromolecules2018, 19,2308−2319..
Wright,D.B.;Thompson,M.P.;Touve,M.A.;Carlini,A.S.;Gianneschi,N.C.Enzyme-responsivepolymernanoparticlesviaring-openingmetathesispolymerization-inducedself-assembly.Macromol. Rapid Commun.2019, 40,1800467..
Hosomi,T.;Masai,H.;Fujihara,T.;Tsuji,Y.;Terao,J.Atypicalmetal-ion-responsivecolor-tunableemittinginsulatedpi-conjugatedpolymerfilm.Angew. Chem. Int. Ed.2016, 55,13427−13431..
Huang,Y.;MoiniJazani,A.;Howell,E.P.;Oh,J.K.;Moffitt,M.G.Controlledmicrofluidicsynthesisofbiologicalstimuli-responsivepolymernanoparticles.ACS Appl. Mater. Interfaces2020, 12,177−190..
Zhang,Q.M.;Xu,W.;Serpe,M.J.Opticaldevicesconstructedfrommultiresponsivemicrogels.Angew. Chem. Int. Ed.2014, 53,4827−4831..
Roy,D.;Brooks,W.L.A.;Sumerlin,B.S.Newdirectionsinthermoresponsivepolymers.Chem. Soc. Rev.2013, 42,7214−7243..
Niskanen,J.;Tenhu,H.Howtomanipulatetheuppercriticalsolutiontemperature(UCST)?Polym. Chem.2017, 8,220−232..
Quiroz,F.G.;Chilkoti,A.Sequenceheuristicstoencodephasebehaviourinintrinsicallydisorderedproteinpolymers.Nat. Mater.2015, 14,1164−1171..
PradnyaN.P.;Ghoderao,P.N.P.;Lee,C.W.;Byun,H.S.Phasebehaviorforthepoly(2-ethyl-2-oxazoline)supercriticalDMEalcoholandcarbondioxide2-ethyl-2-oxazolinemixturesathighpressure.Chem. Eng. J.2023, 270,118566..
Seuring,J.;Agarwal,S.Polymerswithuppercriticalsolutiontemperatureinaqueoussolution.Macromol. Rapid Commun.2012, 33,1898−1920..
Southall,N.T.;Dill,K.A.;Haymet,A.D.J.AViewofthehydrophobiceffect.J. Phys. Chem. B2002, 106,521−533..
Mori,T.;Nakashima,M.;Fukuda,Y.;Minagawa,K.;Tanaka,M.;Maeda,Y.Soluble-insoluble-solubletransitionsofaqueouspoly( N-vinylacetamide- co-acrylicacid)solutions.Langmuir2006, 22,4336−4342..
Hogan,K.J.;Mikos,A.G.Biodegradablethermoresponsivepolymers:applicationsindrugdeliveryandtissueengineering.Polymer2020, 211,123063..
Kotsuchibashi,Y.;Ebara,M.;Aoyagi,T.;Narain,R.Recentadvancesindualtemperatureresponsiveblockcopolymersandtheirpotentialasbiomedicalapplications.Polymers2016, 8,380−405..
Sun,Y.;Nan,D.;Jin,H.;Qu,X.Recentadvancesofinjectablehydrogelsfordrugdeliveryandtissueengineeringapplications.Polym. Test.2020, 81,106283..
Tanaka,T.;Okamoto,M.Reversibletemperature-responsiveandlectin-recognizingglycosylatedblockcopolymerssynthesizedbyRAFTpolymerization.Polym. J.2018, 50,523−531..
Marques,C.F.;Diogo,G.S.;Pina,S.;Oliveira,J.M.;Silva,T.H.;Reis,R.L.Collagen-basedbioinksforhardtissueengineeringapplications:acomprehensivereview.J. Mater. Sci. Mater. Med.2019, 30,32−44..
Ueki,T.Stimuli-responsivepolymersinionicliquids.Polym. J.2014, 46,646−655..
Wang,S.;Liu,Q.;Li,L.;Urban,M.W.Recentadvancesinstimuli-responsivecommoditypolymers.Macromol. Rapid Commun.2021, 42,2100054..
Song,Z.;Wang,K.;Gao,C.;Wang,S.;Zhang,W.Anewthermo-,pH-,andCO2-responsivehomopolymerofpoly[ N-[2-(diethylamino)ethyl]acrylamide]:isthediethylaminogroupunderestimated?Macromolecules2016, 49,162−171..
Seuring,J.;Agarwal,S.Non-ionichomo-andcopolymerswithH-donorandH-acceptorunitswithanUCSTinwater.Macromol. Chem. Phys.2010, 211,2109−2117..
Roth,P.J.;Jochum,F.D.;Forst,F.R.;Zentel,R.;Theato,P.Influenceofendgroupsonthestimulus-responsivebehaviorofpoly[oligo(ethyleneglycol)methacrylate]inwater.Macromolecules2010, 43,4638−4645..
Feil,H.;Bae,Y.H.;Feijen,J.;Kim,S.W.EffectofcomonomerhydrophilicityandionizationonthelowerariticalsolutiontemperatureofiV-isopropylacrylamidecopolymers.Macromolecules1993, 26,2496−2500..
Liu,H.;Ding,A.;Ma,C.;Huang,X.;Feng,C.;Wang,Z.;Wang,Z.;Lu,G.ThedifluoromethylthiomoietylowerstheLCSTofoligo(ethyleneglycol)-basedhomopolymers.Polym. Chem.2020, 11,5833−5843..
Woodfield,P.A.;Zhu,Y.;Pei,Y.;Roth,P.J.HydrophobicallymodifiedsulfobetainecopolymerswithtunableaqueousUCSTthroughpostpolymerizationmodificationofpoly(pentafluorophenylacrylate).Macromolecules2014, 47,750−762..
Roth,P.J.;Davis,T.P.;Lowe,A.B.ComparisonbetweentheLCSTandUCSTtransitionsofdoublethermoresponsivediblockcopolymers:insightsintothebehaviorofPOEGMAinalcohols.Macromolecules2012, 45,3221−3230..
Chang,Y.;Chen,W.Y.;Yandi,W.;Shih,Y.J.;Chu,W.L.;Liu,Y.L.;Chu,C.W.;Ruaan,R.C.;Higuchi,A.Dual-thermoresponsivephasebehaviorofbloodcompatiblezwitterioniccopolymerscontainingnonionicpoly( N-isopropylacrylamide).Biomacromolecules2009, 10,2092−2100..
Willcock,H.;Lu,A.;Hansell,C.F.;Chapman,E.;Collins,I.R.;O'Reilly,R.K.One-potsynthesisofresponsivesulfobetainenanoparticlesbyRAFTpolymerisation:theeffectofbranchingontheUCSTcloudpoint.Polym. Chem.2014, 5,1023−1030..
Seuring,J.;Bayer,F.M.;Huber,K.;Agarwal,S.Uppercriticalsolutiontemperatureofpoly( N-acryloylglycinamide)inwater:aconcealedproperty.Macromolecules2011, 45,374−384..
Liu,F.;Seuring,J.;Agarwal,S.Controlledradicalpolymerizationof N-acryloylglycinamideandUCST-typephasetransitionofthepolymers.J. Polym. Sci., Part A: Polym. Chem.2012, 50,4920−4928..
Seuring,J.;Agarwal,S.Firstexampleofauniversalandcost-effectiveapproach:polymerswithtunableuppercriticalsolutiontemperatureinwaterandelectrolytesolution.Macromolecules2012, 45,3910−3918..
Audureau,N.;Veith,C.;Coumes,F.;Nguyen,T.P.T.;Rieger,J.;Stoffelbach,F.RAFT-polymerized N-cyanomethylacrylamide-based(co)polymersexhibitingtunableUCSTbehaviorinwater.Macromol. Rapid Commun.2021, 42,e2100556..
Sun,X.;Chen,T.;Huang,S.;Cai,F.;Chen,X.;Yang,Z.;Lu,Y.;Peng,H.Stimuli-sensitiveassembliesofhomopolymers.Langmuir2009, 25,11980−11983..
Ma,L.;Liu,R.;Tan,J.;Wang,D.;Jin,X.;Kang,H.;Wu,M.;Huang,Y.Self-assemblyanddual-stimulisensitivitiesofhydroxypropylcellulose-graft-poly( N,N-dimethylaminoethylmethacrylate)copolymersinaqueoussolution.Langmuir2010, 26,8697−8703..
Liu,S.;Liu,M.Synthesisandcharacterizationoftemperature-andpH-sensitivepoly( N,N-diethylacrylamide- co-methacrylicacid).J. Appl. Polym. Sci.2003, 90,3563−3568..
Audureau,N.;Coumes,F.;Rieger,J.;Stoffelbach,F.Poly( N-cyanoethylacrylamide),anewthermoresponsivehomopolymerpresentingbothLCSTandUCSTbehaviorinwater.Polym. Chem.2022, 13,1075−1083..
FengC.;HuangX.Polymerbrushes:efficientsynthesisandapplications.Acc. Chem. Res.2018, 51,2314−2323..
XuB.;FengC.;HuangX.Aversatileplatformforprecisesynthesisofasymmetricmolecularbrushinoneshot.Nat. Commun.2017, 8,333−841..
TatianaV.P.;AlexandrV.B.;YanaA.K.;AnnaA.O.;VladimirV.V.Developmentofhighfluxultrafiltrationpolyphenylsulfonemembranesapplyingthesystemswithupperandlowercriticalsolutiontemperatures:effectofpolyethyleneglycolmolecularweightandcoagulationbathtemperature.J. Membr. Sci.2018, 565,266−280..
YeS.;ChengY.;GuoZ.;WangX.;WeiW.Alipidtoolboxofsugaralcoholfattyacidmonoestersforsingle-componentlipidnanoparticleswithtemperature-controlledrelease.Colloid Surface B2023, 228,113426..
Hirano,T.;Li,M.;Maeda,K.;Oshimura,M.;Ute,K.Unusuallylargehysteresisintemperature-responsivephase-transitionbehaviorofaqueoussolutionsofisotacticcopolymerscomprising N-ethylacrylamideand N-isopropylacrylamide.Polymer2020, 198,122530..
Moraes,R.M.;Carvalho,L.T.;Alves,G.M.;Medeiros,S.F.;Bourgeat-Lami,E.;Santos,A.M.Synthesisandself-Assemblyofpoly( N-Vinylcaprolactam)- b-poly(epsilon-caprolactone)blockcopolymers viathecombinationofRAFT/MADIXandring-openingpolymerizations.Polymers2020, 12,1252−1272..
0
浏览量
13
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构