a.Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
b.CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
c.University of Chinese Academy of Sciences, Beijing 100049, China
ouyangchx@nccd.org.cn (C.X.O.)
xiadong@iccas.ac.cn (X.D.)
Scan for full text
Qin, Y. L.; Zhu, P.; Ouyang, C. X.; Dong, X. Chain extender-induced hydrogen bonding organization determines the morphology and properties of thermoplastic polycarbonate polyurethane. Chinese J. Polym. Sci. 2024, 42, 87–96
Yi-Lang Qin, Ping Zhu, Chen-Xi Ouyang, et al. Chain Extender-induced Hydrogen Bonding Organization Determines the Morphology and Properties of Thermoplastic Polycarbonate Polyurethane[J]. Chinese Journal of Polymer Science, 2024,42(1):87-96.
Qin, Y. L.; Zhu, P.; Ouyang, C. X.; Dong, X. Chain extender-induced hydrogen bonding organization determines the morphology and properties of thermoplastic polycarbonate polyurethane. Chinese J. Polym. Sci. 2024, 42, 87–96 DOI: 10.1007/s10118-023-3010-7.
Yi-Lang Qin, Ping Zhu, Chen-Xi Ouyang, et al. Chain Extender-induced Hydrogen Bonding Organization Determines the Morphology and Properties of Thermoplastic Polycarbonate Polyurethane[J]. Chinese Journal of Polymer Science, 2024,42(1):87-96. DOI: 10.1007/s10118-023-3010-7.
Thermoplastic polycarbonate polyurethanes (PCUs) with symmetric CEs, i.e., 1,4-butanediol and ethanediol demonstrate good phasing and tensile strength. PCUs with asymmetric CE, aminoethanol demonstrate less phasing but the bidentate H-bonding compensate for the asymmetry. At large strains, the PCU with MEA showed morphology of higher orientation.
Thermoplastic polycarbonate polyurethanes (PCUs) are multiblock copolymers that have been applied for medical devices for long time. Aliphatic diols are common chain extenders (CE) involved in the composition of the hard segments of PCU. However, limited knowledge was discovered about how the chemical structure of CE affects the hydrogen bonding organization within PCUs and their mechanical properties. To investigate this problem, a group of PCUs were synthesized respectively by extending the polymer chain with 1,4-butanediol (BDO), aminoethanol (MEA), ethanediol (EO) as three kinds of chain extenders. Tiny differences in the CE chemical structure results in remarkable variations in phase separation, condensed morphologies, thermal and mechanical properties, which are characterized by Fourier transform infrared spectrometer, atomic force microscopy, small-angle X-ray scattering, differential scanning calorimetry, and tensile tests. The microstructural evolution during unilateral deformation and the different mechanism induced by the different CEs was probed and unveil by ,in situ, wide- and small-angle X-ray diffraction. Symmetry of CE can improve the organization of the hydrogen bonding. The coherence strength of the urethane/urea group also plays a key role by comparing the two PCUs with ethanediol and aminoethanol.
Thermoplastic polycarbonate polyurethaneChain extenderHydrogen bondingMechanical properties
Berezkin,Y.;Urick,M.Inmodern polyurethanes: overview of structure property relationship.ACSSymp.Ser.,ACSPublications,2013,p.65−81..
Yilgor,I.;Yilgor,E.;Wilkes,G.L.Criticalparametersindesigningsegmentedpolyurethanesandtheireffectonmorphologyandproperties:acomprehensivereview.Polymer2015,58,A1−A36..
Cheng,B.X.;Gao,W.C.;Ren,X.M.;Ouyang,X.Y.;Zhao,Y.;Zhao,H.;Wu,W.;Huang,C.X.;Liu,Y.;Liu,X.Y.;Li,H.N;Robert,K.Y.L.Areviewofmicrophaseseparationofpolyurethane:characterizationandapplications.Polym. Test.2022,107,107489..
Simmonsa,A.;Hyvarinena,J.;Odella,R.A.;Martinc,D.J.;Gunatillakeb,P.A.;Noblea,K.R.;Poole-Warren,L.A.Long-termin vivobiostabilityofpoly(dimethylsiloxane)/poly(hexamethyleneoxide)mixedmacrodiol-basedpolyurethaneelastomers.Biomaterials2004,25,4887−4900..
Jenney,C.;Millson,P.;Grainger,D.W.;Grubbs,R.;Gunatillake,P.;McCarthy,S.J.;Runt,J.;Beith,J.Assessmentofasiloxanepoly(urethane-urea)elastomerdesignedforimplantableheartvalveleaflets.Adv. Nano Biomed. Res.2021,1,2000032..
Kojio,K.;Furukawa,M.;Nonaka,Y.;Nakamura,S.Controlofmechanicalpropertiesofthermoplasticpolyurethaneelastomersbyrestrictionofcrystallizationofsoftsegment.Materials2010,3,5097−5110..
Bonab,V.S.;Manas-Zloczower,I.Revisitingthermoplasticpolyurethane,fromcompositiontomorphologyandproperties.J. Polym. Sci., Part B: Polym. Phys.2017,55,1553−1564..
Ginzburg,V.V.;Bicerano,J.;Christenson,C.P.;Schrock,A.K.;Patashinski,A.Z.TheoreticalmodelingoftherelationshipbetweenYoung’smodulusandformulationvariablesforsegmentedpolyurethanes.J. Polym. Sci., Part B: Polym. Phys.2009,47,2198−2205..
Xu,W.;Zhang,R.Y.;Liu,W.;Zhu,J.;Dong,X.;Guo,H.X.;Hu,G.H.AMultiscaleinvestigationonthemechanismofshaperecoveryforIPDItoPPDIhardsegmentsubstitutioninpolyurethane.Macromolecules2016,49,5931−5944..
Zhang,Z.Y.;Liu,L.;Xu,D.H.;Zhang,R.Y.;Shia,H.C.;Luana,S.;Yina,J.Researchprogressinpreparationandbiomedicalapplicationoffunctionalmedicalpolyurethaneelastomers.Acta Chim. Sinica2022,80,1436−1447..
Zdrahala,R.J.;Zdrahala,I.J.Biomedicalapplicationsofpolyurethanes:areviewofpastpromises,presentrealities,andavibrantfuture.J. Biomater. Appl.1999,14,67−90..
Hiob,M.A.;She,S.;Muiznieks,L.D.;Weiss,A.S.Biomaterialsandmodificationsinthedevelopmentofsmall-diametervasculargrafts.ACS Biomater. Sci. Eng.2017,3,712−723..
Osman,A.F.;Edwards,G.A.;Schiller,T.L.;Andriani,Y.;Jack,K.S.;Morrow,I.C.;Halley,P.J.;Martin,D.J.Structure-propertyrelationshipsinbiomedicalthermoplasticpolyurethanenanocomposites.Macromolecules2012,45,198−210..
Fatima,J.K.;Pakkanen,T.T.Incorporationofpolydimethylsiloxaneintopolyurethanesandcharacterizationofcopolymers.Eur. Polym. J.2011,47,1694−1708..
Hong,Y.;Guan,J.J.;Fujimoto,K.L.;Hashizume,R.;Pelinescu,A.L.;Wagner,W.R.Tailoringthedegradationkineticsofpoly(estercarbonateurethane)ureathermoplasticelastomersfortissueengineeringscaffolds.Biomaterials2010,31,4249−4258..
Wang,Q;McGoron,A.J.;Bianco,R.;Kato,Y.;Pinchuk,L.;Schoephoerster,R.T.In-vivoassessmentofanovelpolymer(SIBS)trileafletheartvalve.J. Heart Valve Dis.2010,19,499−505..
Kidane,A.G.;Burriesci,G.;Edirisinghe,M.;Ghanbari,H.;Bonhoeffer,P.;Seifalian,A.M.Anovelnanocompositepolymerfordevelopmentofsyntheticheartvalveleaflets.Acta Biomater.2009,5,2409−2417..
Dandeniyage,L.S.;Gunatillake,P.A.;Adhikari,R.;Bown,M.;Shanks,R.;Adhikari,B.Developmentofhighstrengthsiloxanepoly(urethane-urea)elastomersbasedonlinkedmacrodiolsforheartvalveapplication.J. Biomed. Mater. Res. B Appl. Biomater.2018,106,1712−1720..
Cooper,S.L.;Guan,J.J.Advances in polyurethane biomaterials.WoodheadPublishing,2016..
Xie,F.W.;Zhang,T.L.;Bryant,P.;Kurusingal,V.;Colwell,J.M.;Laycock,B.Degradationandstabilizationofpolyurethaneelastomers.Prog. Polym. Sci.2019,90,211−268..
Lai,Y.;Kuang,X.;Zhu,P.;Huang,M.M.;Dong,X.;Wang,D.J.Colorless,transparent,robust,andfastscratch-self-healingelastomersviaaphase-lockeddynamicbondsdesign.Adv. Mater.2018,30,1802556..
Song,Y.;Liu,Y.;Qi,T.;Li,G.L.Towardsdynamic,butsupertoughhealablepolymersviabiomimetichierarchicalhydrogenbondinginteraction.Angew. Chem. Int. Ed.2018,57,13838−13842..
Hornat,C.C.;Urban,M.W.Shapememoryeffectsinself-healingpolymers.Prog. Polym. Sci.2020,102,101208..
Kojio,K.;Nozaki,S.;Takahara,A.;Yamasaki,S.Influenceofchemicalstructureofhardsegmentsonphysicalpropertiesofpolyurethaneelastomers:areview.J. Polym. Res.2020,27,140..
Wiggins,M.J.;MacEwan,M.;Anderson,J.M.;Hiltner,A.Effectofsoft-segmentchemistryonpolyurethanebiostabilityduringinvitrofatigueloading.J. Biomed. Mater. Res. A2004,68,668−683..
Castagna,A.M.;Pangon,A.;Choi,T.;Dillon,G.P.;Runt,J.Theroleofsoftsegmentmolecularweightonmicrophaseseparationanddynamicsofbulkpolymerizedpolyureas.Macromolecules2012,45,8438−8444..
Yilgor,I.;Yilgor,E.;Guler,I.G.;Ward,T.C.;Wilkes,G.L.FTIRinvestigationoftheinfluenceofdiisocyanatesymmetryonthemorphologydevelopmentinmodelsegmentedpolyurethanes.Polymer2006,47,4105−4114..
Liu,X.;Ding,S.S.;Wang,F.;Shi,Y.L.;Wang,X.H.;Wang,Z.G.Controllingenergydissipationduringdeformationbyselectionofthehard-segmentcomponentforthermoplasticpolyurethanes.Ind. Eng. Chem. Res.2022,61,8821−8831..
Nozaki,S.;Masuda,S.;Kamitani,K.;Ken,K.;Takahara,A.;Kuwamura,G.;Hasegawa,D.;Moorthi,K.;Mita,K.;Yamasaki,A.Superiorpropertiesofpolyurethaneelastomerssynthesizedwithaliphaticdiisocyanatebearingasymmetricstructure.Macromolecules2017,50,1008−1015..
Crago,M.;Lee,A.;Farajikhah,S.;Oveissi,F.;Fletcher,D.F.;Dehghani,F.;Winlaw,D.S.;Naficy,S.Theevolutionofpolyurethaneheartvalvereplacements:howchemistrytranslatestotheclinic.Mater. Today Commun.2022,33,104916..
Hu,S.K.;Shou,T.;Zhao,X.Y.;Wang,Z.;Zhang,S.J.;Qin,X.;Guo,M.M.;Zhang.L.Q.RationaldesignofanovelNDI-basedthermoplasticpolyurethaneelastomerwithsuperiorheatresistance.Polymer2020,205,122764..
Zhao,Q.;Jesus,C.B.;Urbanski,P.;Stokes,K.Glasswool-H2O2/CoCl2testsystemforinvitroevaluationofbiodegradativestresscrackinginpolyurethaneelastomers.J. Biomed. Mater. Res.1995,29,467−475..
Tanzi,M.C.;Mantovani,D.;Petrini,P.;Guidoin,R.;Laroche,G.Chemicalstabilityofpolyetherurethanesversuspolycarbonateurethanes.J. Biomed. Mater. Res.1997,36,550−559..
Eceiza,A.;Larranaga,M.;delaCaba,K.;Kortaberria,G.;Marieta,C.;Corcuera,M.A.;Mondragon,I.Structure–propertyrelationshipsofthermoplasticpolyurethaneelastomersbasedonpolycarbonatediols.J. Appl. Polym. Sci.2008,108,3092−3103..
Kojio,K.;Furukawa,M.;Motokucho,S.;Shimada,M.;Sakai,M.Structure-mechanicalpropertyrelationshipsforpoly(carbonateurethane)elastomerswithnovelsoftsegments.Macromolecules2009,42,8322−8327..
Kultys,A.;Rogulska,M.Newthermoplasticpoly(carbonate-urethane)elastomers.Polish J. Chem. Technol.2011,13,23−30..
Liu,Y.;Peng,L.;Lin,J.L.;Zhou,Y.;Wang,D.J.;Han,C.;Huang,X.B.;Dong,X.Thecrystallizationbehaviourregulatingnatureofhydrogenbondsinteractiononpolyamide6,6bypoly(vinylpyrrolidone).Chinese J. Polym. Sci.2023,41,394−404..
Zhu,P.;Zhou,C.X.;Wang,Y.;Sauer,B.;Hu,W.B.;Dong,X.;Wang,D.J.Thereversible-irreversibletransitionofstrain-inducedcrystallizationinsegmentedcopolymers:thecriticalstrainandthechainconformation.ACS Appl. Polym. Mater.2021,3,3576−3585..
Scetta,G.;Euchler,E.;Ju,J.Z.;Selles,N.;Heuillet,P.;Ciccotti,M.;Creton,C.Self-organizationatthecracktipoffatigue-resistantthermoplasticpolyurethaneelastomers.Macromolecules2021,54,8726−8737..
Li,X.K.;Wang,H.;Xiong,B.J.;Pöselt,E.;Eling,B.;Men.Y.F.Destructionandreorganizationofphysicallycross-linkednetworkofthermoplasticpolyurethanedependingonitsglasstransitiontemperature.ACS Appl. Polym. Mater.2019,1,3074−3083..
Rogulska,M.;Maciejewska,M.;Olszewska,E.Newthermoplasticpoly(carbonate-urethane)sbasedondiphenylethanederivativechainextender.J. Therm. Anal. Calorim.2020,139,1049−1068..
Kong,Z.Y.;Tian,Q.;ZhangR.Y.;Yin,J.B.;Shi,L.;Ying,W.B.;Hu,H.;YaoC.K.;Wang,K.;Zhu,J.ReexaminationofthemicrophaseseparationinMDIandPTMGbasedpolyurethane:fastandcontinuousassociation/dissociationprocessesofhydrogenbonding.Polymer2019,185,121943..
Xu,Z.C.;Wang,X.Y.;Huang,H.Thermoplasticpolyurethane–ureaelastomerswithsuperiormechanicalandthermalpropertiespreparedfromalicyclicdiisocyanateanddiamine.J. Appl. Polym. Sci.2020,137,e49575..
He,Y.;Xie,D.L.;Zhang,X.Y.Thestructure,microphase-separatedmorphology,andpropertyofpolyurethanesandpolyureas.J. Mater. Sci.2014,49,7339−7352..
Eceiza,A.;Martin,M.D.;delaCaba,K.;Kortaberria,G.;Gabilondo,N.;Corcuera,M.A.;Mondragon,I.Thermoplasticpolyurethaneelastomersbasedonpolycarbonatediolswithdifferentsoftsegmentmolecularweightandchemicalstructure:mechanicalandthermalproperties.Polym. Eng. Sci.2008,48,297−306..
Kojio,K.;Matsuo,K.;Motokucho,S.;Yoshinaga,K.;Shimodaira,Y.;Kimura,K.Simultaneoussmall-angleX-rayscattering/wide-angleX-raydiffractionstudyofthemicrodomainstructureofpolyurethaneelastomersduringmechanicaldeformation.Polym. J.2011,43,692−699..
Zhu,P.;Brückner,A.;Neumeyer,T.;Standau,T.;Ruckdäschel,H.;Altstädt,V.;Dong,X.;Wang,D.J.Fatiguecharacteristicsofpoly(ether-b-amide)elastomersduringcyclicdynamictestsandtheunderlyingmicrostructuralevolution.Ind. Eng. Chem. Res.2022,61,14760−14771..
Hu,S.K.;He,S.Y.;Wang,Y.M.;Wu,Y.W.;Shou,T.;Yin,D.X.;Mu,G.Y.;Zhao,X.Y.;Gao,Y.Y.;Liu,J.;Li,F.Z.;Guo,M.M.;Zhang,L.Q.Self-repairable,recyclableandheat-resistantpolyurethaneforhigh-performanceautomobiletires.Nano Energy2022,95,107012..
0
浏览量
14
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构