a.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
jjin@ciac.ac.cn (J.J.)
wjiang@ciac.ac.cn (W.J.)
Scan for full text
Li, C.; Zhang, J. N.; Jin, J.; Jiang, W. The effect of topologies and refilling short-chain PEG on protein adsorption. Chinese J. Polym. Sci. 2023, 41, 1879–1888
Chi Li, Jia-Ning Zhang, Jing Jin, et al. The Effect of Topologies and Refilling Short-chain PEG on Protein Adsorption[J]. Chinese Journal of Polymer Science, 2023,41(12):1879-1888.
Li, C.; Zhang, J. N.; Jin, J.; Jiang, W. The effect of topologies and refilling short-chain PEG on protein adsorption. Chinese J. Polym. Sci. 2023, 41, 1879–1888 DOI: 10.1007/s10118-023-2971-x.
Chi Li, Jia-Ning Zhang, Jing Jin, et al. The Effect of Topologies and Refilling Short-chain PEG on Protein Adsorption[J]. Chinese Journal of Polymer Science, 2023,41(12):1879-1888. DOI: 10.1007/s10118-023-2971-x.
SH-PEG and SH-PEG-SH polymers can form linear and looped conformation on the surface by gold-sulfur bonds, respectively. Refilling short-chain PEGs can be seen clearly to improve protein resistance, and the substrate conformation-dependence occurred during protein adsorption.
PEGylation is the gold standard for constructing protein resistance surfaces. Herein, grafting mPEG-SH and SH-PEG-SH with varied molecular weights (Mw=5K, 10K, and 20K) on a gold chip, and the subsequent lysozyme adsorptions of the PEG layers are evaluated using quartz-crystal microbalance based on dissipation (QCM-D). The lysozyme resistance depends on the features of grafting density and chain conformation,i.e., linear and looped conformation. However, long-chain PEG (Mw≥10K) is insufficient to form a dense layer to resist protein due to large steric hindrances. Short-chain PEG (Mw=1K) with linear and looped structures is used to refill onto the long-chain PEG layer to increase the grafting density of PEGs and improve protein resistance. The refilling process and the subsequent protein adsorption depend on conformation rather than the density of the long-chain PEG substrate. Notably, the long-chain PEG looped substrates significantly improve protein resistance, attributing to the high viscoelasticity of the looped substrate and an increase in grafting density after refilling. Thus, refilling short-chain PEG improves protein resistance and the substrate conformation-dependence gives insight into the impact of topology, providing new ideas for how to increase chain density and select suitable topology to resist protein adsorption and demonstrating a potential application in biomedical fields.
Poly(ethylene glycol)RefillingProtein adsorptionConformationQCM-D
Brash,J.L.;Horbett,T.A.;Latour,R.A.;Tengvall,P.Thebloodcompatibilitychallenge.Part2:proteinadsorptionphenomenagoverningbloodreactivity.Acta Biomater.2019,94,11−24..
Bochenek,M.;Oleszko-Torbus,N.;Wałach,W.;Lipowska-Kur,D.;Dworak,A.;Utrata-Wesołek,A.Polyglycidoloflinearorbranchedarchitectureimmobilizedonasolidsupportforbiomedicalapplications.Polym. Rev.2020,60,717−767..
Mevo,S.I.U.;Ashrafudoulla,M.;FurkanurRahamanMizan,M.;Park,S.H.;Ha,S.D.Promisingstrategiestocontrolpersistentenemies:somenewtechnologiestocombatbiofilminthefoodindustry—areview.Compr. Rev. Food Sci. Food Saf.2021,20,5938−5964..
Ye,Z.;Zhang,P.;Zhang,J.;Deng,L.;Zhang,J.;Lin,C.;Guo,R.;Dong,A.Noveldual-functionalcoatingwithunderwaterself-healingandanti-protein-foulingpropertiesbycombiningtwokindsofmicrocapsulesandazwitterioniccopolymer.Prog. Org. Coat.2019,127,211−221..
SabatédelRío,J.;Henry,O.Y.;Jolly,P.;Ingber,D.E.Anantifoulingcoatingthatenablesaffinity-basedelectrochemicalbiosensingincomplexbiologicalfluids.Nat. Nanotechnol.2019,14,1143−1149..
Ahsan,S.M.;Rao,C.M.;Ahmad,M.Nanoparticle-proteininteraction:thesignificanceandroleofproteincorona.Mol. Cell. Toxicol.2018,175−198..
Hedayati,M.;Marruecos,D.F.;Krapf,D.;Kaar,J.L.;Kipper,M.J.Proteinadsorptionmeasurementsonlowfoulingandultralowfoulingsurfaces:acriticalcomparisonofsurfacecharacterizationtechniques.Acta Biomater.2020,102,169−180..
Cerchier,P.;Pezzato,L.;Gennari,C.;Moschin,E.;Moro,I.;Dabalà,M.PEOcoatingcontainingcopper:ApromisinganticorrosiveandantifoulingcoatingforseawaterapplicationofAA7075.Surf. Coat. Technol.2020,393,125774..
Guo,L.L.;Cheng,Y.F.;Ren,X.;Gopinath,K.;Lu,Z.S.;Li,C.M.;Xu,L.Q.Simultaneousdepositionoftannicacidandpoly(ethyleneglycol)toconstructtheantifoulingpolymericcoatingontitaniumsurface.Colloids Surf. B: Biointerfaces2021,200,111592..
Shin,E.;Lim,C.;Kang,U.J.;Kim,M.;Park,J.;Kim,D.;Choi,W.;Hong,J.;Baig,C.;Lee,D.W.;Kim,B.S.Mussel-inspiredcopolyetherloopwithsuperiorantifoulingbehavior.Macromolecules2020,53,3551−3562..
Aghajani,M.;Esmaeili,F.Anti-biofoulingassemblystrategiesforprotein&cellrepellentsurfaces:amini-review.J. Biomater. Sci., Polym. Ed.2021,32,1770−1789..
Zhang,K.X.;Huang,H.;Hung,H.C.;Leng,C.;Wei,S.;Crisci,R.;Jiang,S.Y.;Chen,Z.Stronghydrationatthepoly(ethyleneglycol)brush/albuminsolutioninterface.Langmuir2020,36,2030−2036..
Hafeez,A.;Karim,Z.A.;Ismail,A.F.;Samavati,A.;Said,K.A.M.;Selambakkannu,S.Functionalizedboronnitridecompositeultrafiltrationmembranefordyeremovalfromaqueoussolution.J. Membr. Sci.2020,612,118473..
Wang,X.;Bowman,J.;Tu,S.;Nykypanchuk,D.;Kuksenok,O.;Minko,S.PolyethyleneglycolCrowder'seffectonenzymeaggregation,thermalstability,andresidualcatalyticactivity.Langmuir2021,37,8474−8485..
Lu,J.;Xue,Y.;Shi,R.;Kang,J.;Zhao,C.Y.;Zhang,N.N.;Wang,C.Y.;Lu,Z.Y.;Liu,K.Anon-sacrificialmethodforthequantificationofpoly(ethyleneglycol)graftingdensityongoldnanoparticlesforapplicationsinnanomedicine.Chem. Sci.2019,10,2067−2074..
Ortiz,R.;Olsen,S.;Thormann,E.Salt-inducedcontrolofthegraftingdensityinpoly(ethyleneglycol)brushlayersbyagrafting-toapproach.Langmuir2018,34,4455−4464..
Wang,H.;Zhang,Z.;Chen,J.;Lian,C.;Han,X.;Liu,H.Conformation-dominatedsurfaceantifoulingandaqueouslubrication.Colloids Surf. B: Biointerfaces2022,214,112452..
Unsworth,L.;Sheardown,H.;Brash,J.Proteinresistanceofsurfacespreparedbysorptionofend-thiolatedpoly(ethyleneglycol)togold:effectofsurfacechaindensity.Langmuir2005,21,1036−1041..
Unsworth,L.D.;Tun,Z.;Sheardown,H.;Brash,J.L.In situneutronreflectometryinvestigationofgold-chemisorbedPEOlayersofvaryingchaindensity:relationshipoflayerstructuretoproteinresistance.J. Colloid Interface Sci.2006,296,520−526..
Liu,Y.X.;Zhang,H.D.Structuresandsurfacestatesofpolymerbrushesingoodsolvents:effectsofsurfaceinteractions.Chinese J. Polym. Sci.2018,36,1047−1054..
Penna,M.;Ley,K.J.;Belessiotis-Richards,A.;MacLaughlin,S.;Winkler,D.A.;Yarovsky,I.Hydrationanddynamicsofligandsdeterminetheantifoulingcapacityoffunctionalizedsurfaces.J. Phys. Chem. C2019,123,30360−30372..
Jeon,S.;Lee,J.;Andrade,J.;DeGennes,P.Protein—surfaceinteractionsinthepresenceofpolyethyleneoxide:I.Simplifiedtheory.J. Colloid Interface Sci.1991,142,149−158..
Benhabbour,S.R.;Sheardown,H.;Adronov,A.ProteinresistanceofPEG-functionalizeddendronizedsurfaces:effectofPEGmolecularweightanddendrongeneration.Macromolecules2008,41,4817−4823..
Chen,Q.;Yu,S.;Zhang,D.;Zhang,W.;Zhang,H.;Zou,J.;Mao,Z.;Yuan,Y.;Gao,C.;Liu,R.ImpactofantifoulingPEGlayerontheperformanceoffunctionalpeptidesinregulatingcellbehaviors.J. Am. Chem. Soc.2019,141,16772−16780..
Wang,H.;Dardir,K.;Lee,K.B.;Fabris,L.Impactofproteincoronainnanoflare-basedbiomoleculardetectionandquantification.Bioconjugate Chem.2019,30,2555−2562..
Dai,Q.;Walkey,C.;Chan,W.C.Polyethyleneglycolbackfillingmitigatesthenegativeimpactoftheproteincoronaonnanoparticlecelltargeting.Angew. Chem. Int. Ed.2014,53,5093−5096..
Du,Y.;Jin,J.;Jiang,W.AstudyofpolyethyleneglycolbackfillingforenhancingtargetrecognitionusingQCM-DandDPI.J. Mater. Chem. B2018,6,6217−6224..
Hu,Y.;Jin,J.;Han,Y.;Yin,J.;Jiang,W.;Liang,H.Studyoffibrinogenadsorptiononpoly(ethyleneglycol)-modifiedsurfacesusingaquartzcrystalmicrobalancewithdissipationandadualpolarizationinterferometry.RSC Adv.2014,4,7716−7724..
Jin,J.;Han,Y.;Zhang,C.;Liu,J.;Jiang,W.;Yin,J.;Liang,H.EffectofgraftedPEGchainconformationonalbuminandlysozymeadsorption:acombinedstudyusingQCM-DandDPI.Colloids Surf., B2015,136,838−844..
Li,B.;Yu,B.;Wang,X.L.;Guo,F.;Zhou,F.Correlationbetweenconformationchangeofpolyelectrolytebrushesandlubrication.Chinese J. Polym. Sci.2015,33,163−172..
Han,Y.;Ma,J.;Hu,Y.;Jin,J.;Jiang,W.Effectofend-graftedpolymerconformationonproteinresistance.Langmuir2018,34,2073−2080..
Du,Y.;Jin,J.;Liang,H.;Jiang,W.Structuralandphysicochemicalpropertiesandbiocompatibilityoflinearandloopedpolymer-cappedgoldnanoparticles.Langmuir2019,35,8316−8324..
Lv,J.;Jin,J.;Han,Y.;Jiang,W.Effectofend-graftedPEGconformationonthehemocompatibilityofpoly(styrene-b-(ethylene-co-butylene)-b-styrene).J. Biomater. Sci., Polym. Ed.2019,30,1670−1685..
Alexander,S.Adsorptionofchainmoleculeswithapolarheadascalingdescription.J. Phys. I1977,38,983−987..
Jin,J.;Hu,Y.;Han,Y.;Jiang,W.Modifiedsurfacebypoly(ethyleneglycol)withloopedconformationanditssuperioranticoagulantproperty.Sci. Sin. Chim.2018,48,972−980..
0
浏览量
4
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621