1.Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
czzhu@szu.edu.cn (C.Z.Z.)
wangml@szu.edu.cn (M.L.W.)
jxu@iccas.ac.cn (J.X.)
Scan for full text
Xie, Y. K.; Feng, L. K.; Li, D. D.; Tang, Y.; Zhu, C. Z.; Wang, M. L.; Xu, J. Novel quasi solid-state succinonitrile-based electrolyte with low-flammability for lithium-ion battery. Chinese J. Polym. Sci. 2023, 41, 1695–1705
Yan-Kun Xie, Lu-Kun Feng, Dong-Dong Li, et al. Novel Quasi Solid-State Succinonitrile-based Electrolyte with Low-flammability for Lithium-ion Battery[J]. Chinese Journal of Polymer Science, 2023,41(11):1695-1705.
Xie, Y. K.; Feng, L. K.; Li, D. D.; Tang, Y.; Zhu, C. Z.; Wang, M. L.; Xu, J. Novel quasi solid-state succinonitrile-based electrolyte with low-flammability for lithium-ion battery. Chinese J. Polym. Sci. 2023, 41, 1695–1705 DOI: 10.1007/s10118-023-2970-y.
Yan-Kun Xie, Lu-Kun Feng, Dong-Dong Li, et al. Novel Quasi Solid-State Succinonitrile-based Electrolyte with Low-flammability for Lithium-ion Battery[J]. Chinese Journal of Polymer Science, 2023,41(11):1695-1705. DOI: 10.1007/s10118-023-2970-y.
The SN-based electrolyte with low-flammability has been successfully through in-situ polymerization method. The as-prepared SN-based electrolyte exhibited good electrochemical performance and low-flammability.
Quasi solid-state succinonitrile (SN)-based polymer electrolytes have emerged for lithium-metal batteries due to their excellent ion-conductivity at room temperature, wide electrochemical stability window (ESW, usually ,>,5 V). However, the practical application of these solid SN-based polymer electrolytes is hampered by the flammability and the inherent instability of SN to Li-metal anode. In this work, solid SN-based polymer electrolytes were prepared with succinonitrile, ethoxylated trimethylolpropane triacrylate (ETPTA), triethyl phosphate (TEP) and fluoroethylene carbonate for Li-metal battery ,via,in situ, polymerization method. The SN-based polymer electrolytes with 5 wt% triethyl phosphate and FEC showed good nonflammability, superior ion-conductivity as high as 1.01×10,−3, S/cm, and wide ESW of 5.41 V. This SN-based polymer electrolyte also exhibited excellent interfacial compatibility to lithium metal anode. And it also delivered a high specific capacity of 156 mAh/g at 0.2 C at ambient temperature, and presented stable cycling at 1.0 C with a specific capacity retention of 98.4% after 1000 cycles. This work provides an alternative and simple strategy to realize the practical application of the solid-state SN-based polymer electrolyte.
Solid polymer electrolyteSuccinonitrileSolid-state batteryIn situ polymerization Low-flammability
Jia,H.;Onishi,H.;Wagner,R.;Winter,M.;Cekic-Laskovic,I.Intrinsicallysafegelpolymerelectrolytecomprisingflame-retardingpolymermatrixforlithiumionbatteryapplication.ACS Appl. Mater. Interfaces2018,10,42348−42355..
Zhang,J.;Zhu,C.;Xu,J.;Wu,J.;Yin,X.,Chen,S.;Zhu,Z.;Wang,L.;Li,Z.Enhancedmechanicalbehaviorandelectrochemicalperformanceofcompositeseparatorbyconstructingcrosslinkedpolymerelectrolytenetworksonpolyphenylenesulfidenonwovensurface.J. Membr. Sci.2020,597,117622..
Li,D.;Zhang,H.;Li,X.Porouspolyetherimidemembraneswithtunablemorphologyforlithium-ionbattery.J. Membr. Sci.2018,565,42−49..
Manthiram,A.;Yu,X.;Wang,S.Lithiumbatterychemistriesenabledbysolid-stateelectrolytes.Nat. Rev. Mater.2017,2,16103..
Wan,J.;Xie,J.;Mackanic,D.G.;Burke,W.;Bao,Z.;Cui,Y.Status,promises,andchallengesofnanocompositesolid-stateelectrolytesforsafeandhighperformancelithiumbatteries.Mater. Today Nano2018,4,1−16..
Xu,K.Nonaqueousliquidelectrolytesforlithium-basedrechargeablebatteries.Chem. Rev.2004,104,4303−4418..
Zheng,J.;Yang,Y.;Feng,X.;Li,X.;Zhen,X.;Chen,W.;Zhao,Y.Thepolymerizationcapabilityofalkenylphosphatesandapplicationasgelcopolymerelectrolytesforlithiumionbatterieswithhighflame-retardancy.React. Funct. Polym.2020,149,104535..
Zhang,S.;Li,Z.;Guo,Y.;Cai,L.;Manikandan,P.;Zhao,K.;Li,Y.;Pol,V.G.Room-temperature,high-voltagesolid-statelithiumbatterywithcompositesolidpolymerelectrolytewithin-situthermalsafetystudy.Chem. Eng. J.2020,400,125996..
Lim,H.D.;Park,J.H.;Shin,H.J.;Jeong,J.;Kim,J.T.;Nam,K.W.;Jung,H.G.;Chung,K.Y.Areviewofchallengesandissuesconcerninginterfacesforall-solid-statebatteries.Energy Storage Mater.2020,25,224−250..
Chen,Y.;Wen,K.;Chen,T.;Zhang,X.;Armand,M.;Chen,S.Recentprogressinall-solid-statelithiumbatteries:theemergingstrategiesforadvancedelectrolytesandtheirinterfaces.Energy Storage Mater.2020,31,401−433..
Chen,W.P.;Duan,H.;Shi,J.L.;Qian,Y.;Wan,J.;Zhang,X.D.;Sheng,H.;Guan,B.;Wen,R.;Yin,Y.X.;Xin,S.;Guo,Y.G.;Wan,L.J.BridginginterparticleLi+conductioninasoftceramicoxideelectrolyte.J. Am. Chem. Soc.2021,143,5717−5726..
Liu,K.;Li,X.;Cai,J.;Yang,Z.;Chen,Z.;Key,B.;Zhang,Z.;Dzwiniel,T.L.;Liao,C.Designofhigh-voltagestablehybridelectrolytewithanultrahighLitransferencenumber.ACS Energy Lett.2021,6,1315−1323..
Li,S.;Zhang,S.Q.;Shen,L.;Liu,Q.;Ma,J.B.;Lv,W.;He,Y.B.;Yang,Q.H.Progressandperspectiveofceramic/polymercompositesolidelectrolytesforlithiumbatteries.Adv. Sci.2020,7,1903088..
Zhou,D.;Shanmukaraj,D.;Tkacheva,A.;Armand,M.;Wang,G.X.Polymerelectrolytesforlithium-basedbatteries:advancesandprospects.Chem2019,5,2326−2352..
Zhang,Q.Q.;Liu,K.;Ding,F.;Liu,X.J.Recentadvancesinsolidpolymerelectrolytesforlithiumbatteries.Nano Res.2017,10,4139−4174..
Xiang,J.;Zhang,Y.;Zhang,B.;Yuan,L.;Liu,X.;Cheng,Z.;Yang,Y.;Zhang,X.;Li,Z.;Shen,Y.;Jiang,J.;Huang,Y.Aflame-retardantpolymerelectrolyteforhighperformancelithiummetalbatterieswithanexpandedoperationtemperature.Energ. Environ. Sci.2021,14,3510−3521..
Lin,D.;Yuen,P.Y.;Liu,Y.;Liu,W.;Liu,N.;Dauskardt,R.H.;Cui,Y.Asilica-aerogel-reinforcedcompositepolymerelectrolytewithhighionicconductivityandhighmodulus.Adv. Mater.2018,30,1802661..
Cho,Y.G.;Hwang,C.;Cheong,D.S.;Kim,Y.S.;Song,H.K.Gel/solidpolymerelectrolytescharacterizedbyin situgelationorpolymerizationforelectrochemicalenergysystems.Adv. Mater.2019,31,1804909..
Guo,J.;Chen,Y.;Xiao,Y.;Xi,C.;Xu,G.;Li,B.;Yang,C.;Yu,Y.Flame-retardantcompositegelpolymerelectrolytewithadualaccelerationconductionmechanismforlithiumionbatteries.Chem. Eng. J.2021,422,130526..
Xu,D.;Su,J.;Jin,J.;Sun,C.;Ruan,Y.;Chen,C.;Wen,Z.In situgeneratedfireproofgelpolymerelectrolytewithLi6.4Ga0.2La3Zr2O12asinitiatorandion-conductivefiller.Adv. Energy Mater.2019,9,1900611..
Li,S.;Zhang,W.;Wu,Q.;Fan,L.;Wang,X.;Wang,X.;Shen,Z.;He,Y.;Lu,Y.Synergisticdual-additiveelectrolyteenablespracticallithium-metalbatteries.Angew. Chem. Int. Ed.2020,59,14935−14941..
Zhu,Y.;Xiao,S.;Shi,Y.;Yang,Y.;Hou,Y.;Wu,Y.Acompositegelpolymerelectrolytewithhighperformancebasedonpoly(vinylidenefluoride)andpolyborateforlithiumionbatteries.Adv. Energy Mater.2014,4,1300647..
Li,H.;Ma,X.T.;Shi,J.L.;Yao,Z.K.;Zhu,B.K.;Zhu,L.P.Preparationandpropertiesofpoly(ethyleneoxide)gelfilledpolypropyleneseparatorsandtheircorrespondinggelpolymerelectrolytesforLi-ionbatteries.Electrochim. Acta2011,56,2641−2647..
Hwang,S.S.;Cho,C.G.;Kim,H.Roomtemperaturecross-linkablegelpolymerelectrolytesforlithiumionbatteriesbyin situcationicpolymerizationofdivinylether.Electrochem. Commun.2010,12,916−919..
Xia,Y.;Liang,Y.F.;Xie,D.;Wang,X.L.;Zhang,S.Z.;Xia,X.H.;Gu,C.D.;Tu,J.P.Apoly(vinylidenefluoride-hexafluoropropylene)basedthree-dimensionalnetworkgelpolymerelectrolyteforsolid-statelithium-sulfurbatteries.Chem. Eng. J.2019,358,1047−1053..
Liu,M.;Zhou,D.;He,Y.B.;Fu,Y.;Qin,X.;Miao,C.;Du,H.;Li,B.;Yang,Q.H.;Lin,Z.;Zhao,T.S.;Kang,F.Novelgelpolymerelectrolyteforhigh-performancelithium-sulfurbatteries.Nano Energy2016,22,278−289..
Zhang,D.;Li,R.;Huang,T.;Yu,A.Novelcompositepolymerelectrolyteforlithiumairbatteries.J. Power Sources2010,195,1202−1206..
Mohamed,S.N.;Johari,N.A.;Ali,A.M.M.;Harun,M.K.;Yahya,M.Z.A.Electrochemicalstudiesonepoxidisednaturalrubber-basedgelpolymerelectrolytesforlithium-aircells.J. Power Sources2008,183,351−354..
Li,Z.;Weng,S.;Fu,J.;Wang,X.;Zhou,X.;Zhang,Q.;Wang,X.;Wei,L.;Guo,X.Nonflammablequasi-solidelectrolyteforenergy-denseandlong-cyclinglithiummetalbatterieswithhigh-voltageNi-richlayeredcathodes.Energy Storage Mater.2022,47,542−550..
Kim,J.M.;Zhang,X.;Zhang,J.G.;Manthiram,A.;Meng,Y.S.;Xu,W.Areviewonthestabilityandsurfacemodificationoflayeredtransition-metaloxidecathodes.Mater. Today2021,46,155−182..
Yang,H.;Guo,C.;Chen,J.;Naveed,A.;Yang,J.;Nuli,Y.;Wang,J.Anintrinsicflame-retardantorganicelectrolyteforsafelithium-sulfurbatteries.Angew. Chem. Int. Ed.2019,58,791−795..
Chen,S.;Zheng,J.;Yu,L.;Ren,X.;Engelhard,M.H.;Niu,C.;Lee,H.;Xu,W.;Xiao,J.;Liu,J.;Zhang,J.G.High-efficiencylithiummetalbatterieswithfire-retardantelectrolytes.Joule2018,2,1548−1558..
Sasaki,R.;Moriya,M.;Watanabe,Y.;Nishio,K.;Hitosugi,T.;Tateyama,Y.PeculiarlyfastLi-ionconductionmechanisminasuccinonitrile-basedmolecularcrystalelectrolyte:amoleculardynamicsstudy.J. Mater. Chem. A2021,9,14897−14903..
Feng,C.;Kyu,T.Roleofdinitrileplasticizerchainlengthsinelectrochemicalperformanceofhighlyconductivepolymerelectrolytemembraneforlithiumionbattery.Electrochim. Acta2020,330,135320..
Ugata,Y.;Thomas,M.L.;Mandai,T.;Ueno,K.;Dokko,K.;Watanabe,M.Li-ionhoppingconductioninhighlyconcentratedlithiumbis(fluorosulfonyl)amide/dinitrileliquidelectrolytes.Phys. Chem. Chem. Phys.2019,21,9759−9768..
Fang,Z.;Zheng,Z.;Cheng,W.;Zhang,X.;Zhong,K.;Li,L.Mechanismofstabilityenhancementforadiponitrilehighvoltageelectrolytesystemreferringtoadditionoffluoroethylenecarbonate.Front. Chem.2020,8,1−10..
Zhang,Q.;Liu,K.;Ding,F.;Li,W.;Liu,X.;Zhang,J.Safety-reinforcedsuccinonitrile-basedelectrolytewithinterfacialstabilityforhigh-performancelithiumbatteries.ACS Appl. Mater. Interfaces2017,9,29820−29828..
Taib,N.U.;Idris,N.H.Plasticcrystal-solidbiopolymerelectrolytesforrechargeablelithiumbatteries.J. Membr. Sci.2014,468,149−154..
Suleman,M.;Kumar,Y.;Hashmi,S.A.Structuralandelectrochemicalpropertiesofsuccinonitrile-basedgelpolymerelectrolytes:roleofionicliquidaddition.J. Phys. Chem. B2013,117,7436−7443..
Hou,Q.;Wang,H.;Zhao,F.;Zhang,K.;Zhao,H.;Qi,Y.;Ren,Z.;Shen,C.;Xie,K.Monoanion-regulatedhigh-voltagenitrile-basedsolidelectrolytewithcompatiblelithiuminertness.Energy Storage Mater.2021,34,640−647..
Alarco,P.J.;Abu-Lebdeh,Y.;Abouimrane,A.;Armand,M.Theplastic-crystallinephaseofsuccinonitrileasauniversalmatrixforsolid-stateionicconductors.Nat. Mater.2004,3,476−481..
Fu,F.;Liu,Y.;Sun,C.;Cong,L.;Liu,Y.;Sun,L.;Xie,H.Unveilingandalleviatingchemical“crosstalk”ofsuccinonitrilemoleculesinhierarchicalelectrolyteforhigh-voltagesolid-statelithiummetalbatteries.Energy Environ. Mater.2022,DOI:10.1002/eem2.12367..
Wang,A.;Geng,S.;Zhao,Z.;Hu,Z.;Luo,J.In situcross-linkedplasticcrystalelectrolytesforwide-temperatureandhigh-energy-densitylithiummetalbatteries.Adv. Funct. Mater.2022,32,2201861..
Bhat,M.Y.;Hashmi,S.A.Mixtureofnon-ionicandorganicionicplasticcrystalsimmobilizedinpoly(vinylidenefluoride-co-hexafluoropropylene):aflexiblegelpolymerelectrolytecompositionforhighperformancecarbonsupercapacitors.J. Energy Storage2022,51,104514..
Fu,C.;Ma,Y.;Lou,S.;Cui,C.;Xiang,L.;Zhao,W.;Zuo,P.;Wang,J.;Gao,Y.;Yin,G.Adual-saltcoupledfluoroethylenecarbonatesuccinonitrile-basedelectrolyteenablesLi-metalbatteries.J. Mater. Chem. A2020,8,2066−2073..
Kamienski,C.W.Lithiumcatalysisinindustrialpolymerization.Indust. Eng. Chem.1965,57,38−55..
Wang,C.;Adair,K.R.;Liang,J.;Li,X.;Sun,Y.;Li,X.;Wang,J.;Sun,Q.;Zhao,F.;Lin,X.;Li,R.;Huang,H.;Zhang,L.;Yang,R.;Lu,S.;Sun,X.Solid-stateplasticcrystalelectrolytes:effectiveprotectioninterlayersforsulfide-basedall-solid-statelithiummetalbatteries.Adv. Funct. Mater.2019,29,1900392..
Rupich,L.P.M.W.;Abraham,K.M.CharacterizationofreactionsandproductsofthedischargeandforcedoverdischargeofLi/SO2cells.J. Electrochem. Soc.1982,129,1857−1861..
Zha,W.;Li,J.;Li,W.;Sun,C.;Wen,Z.Anchoringsuccinonitrilebysolvent-Li+associationsforhigh-performancesolid-statelithiumbattery.Chem. Eng. J.2021,406,126754..
Zhang,H.;Qu,W.;Chen,N.;Huang,Y.;Li,L.;Wu,F.;Chen,R.IonicliquidelectrolytewithhighlyconcentratedLiTFSIforlithiummetalbatteries.Electrochim. Acta2018,285,78−85..
Maeyoshi,Y.;Ding,D.;Kubota,M.;Ueda,H.;Abe,K.;Kanamura,K.;Abe,H.Long-termstablelithiummetalanodeinhighlyconcentratedsulfolane-basedelectrolyteswithultrafineporouspolyimideseparator.ACS Appl. Mater. Interfaces2019,11,25833−25843..
Yamada,Y.;Wang,J.;Ko,S.;Watanabe,E.A.Yamada,A.Advancesandissuesindevelopingsalt-concentratedbatteryelectrolytes.Nat. Energy2019,4,269−280..
Yamada,Y.;Furukawa,K.;Sodeyama,K.;Kikuchi,K.;Yaegashi,M.;Tateyama,Y.;Yamada,A.Unusualstabilityofacetonitrile-basedsuperconcentratedelectrolytesforfast-charginglithium-ionbatteries.J. Am. Chem. Soc.2014,136,5039−5046..
Wang,J.;Yamada,Y.;Sodeyama,K.;Chiang,C.H.;Tateyama,Y.;Yamada,A.Superconcentratedelectrolytesforahigh-voltagelithium-ionbattery.Nat. Commun.2016,7,12032..
Jiao,S.;Ren,X.;Cao,R.;Engelhard,M.H.;Liu,Y.;Hu,D.;Mei,D.;Zheng,J.;Zhao,W.;Li,Q.;Liu,N.;Adams,B.D.;Ma,C.;Liu,J.;Zhang,J.G.;Xu,W.Stablecyclingofhigh-voltagelithiummetalbatteriesinetherelectrolytes.Nat. Energy2018,3,739−746..
Ha,H.J.;Kil,E.H.;Kwon,Y.H.;Kim,J.Y.;Lee,C.K.;Lee,S.Y.UV-curablesemi-interpenetratingpolymernetwork-integrated,highlybendableplasticcrystalcompositeelectrolytesforshape-conformableall-solid-statelithiumionbatteries.Energy Environ. Sci.2012,5,6491−6499..
Xiao,P.;Zhao,Y.;Piao,Z.;Li,B.;Zhou,G.;Cheng,H.M.Anonflammableelectrolyteforultrahigh-voltage(4.8V-class)Li||NCM811cellswithawidetemperaturerangeof100°C.Energy Environ. Sci.2022,15,2435−2444..
Guan,D.;Hu,G.;Peng,Z.;Cao,Y.;Wu,J.;Huang,M.;Zhang,S.;Dai,Y.;Gong,Y.;Du,K.Anonflammablelow-concentrationelectrolyteforlithium-ionbatteries.J. Mater. Chem. A2022,10,12575−12587..
Zhang,K.;An,Y.;Wei,C.;Qian,Y.;Zhang,Y.;Feng,J.High-safetyanddendrite-freelithiummetalbatteriesenabledbybuildingastableinterfaceinanonflammablemedium-concentrationphosphateelectrolyte.ACS Appl. Mater. Interfaces2021,13,50869−50877..
Sun,L.;Peng,C.;Kong,L.;Li,Y.;Feng,W.Nitrileelectrolytestrategyfor4.9V-classlithium-metalbatteriesoperatinginflame.Energy Environ. Mater.2023,6,e12383..
Tan,S.J.;Yue,J.;Hu,X.C.;Shen,Z.Z.;Wang,W.P.;Li,J.Y.;Zuo,T.T.;Duan,H.;Xiao,Y.;Yin,Y.X.;Wen,R.;Guo,Y.G.Nitriding-interface-regulatedlithiumplatingenablesflame-retardantelectrolytesforhigh-voltagelithiummetalbatteries.Angew. Chem. Int. Ed.2019,58,7802−7807..
0
浏览量
5
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构