1.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
ygma@scut.edu.cn
Scan for full text
A Brief Introduction to Organic Electrodeposition and a Review of the Fabrication of OLEDs based on Electrodeposition Technology[J]. 高分子科学(英文版), 2023,41(5):621-639.
Bo-Han Wang, Yu-Guang Ma, Yong Cao. A Brief Introduction to Organic Electrodeposition and a Review of the Fabrication of OLEDs based on Electrodeposition Technology[J]. Chinese Journal of Polymer Science, 2023,41(5):621-639.
A Brief Introduction to Organic Electrodeposition and a Review of the Fabrication of OLEDs based on Electrodeposition Technology[J]. 高分子科学(英文版), 2023,41(5):621-639. DOI: 10.1007/s10118-023-2964-9.
Bo-Han Wang, Yu-Guang Ma, Yong Cao. A Brief Introduction to Organic Electrodeposition and a Review of the Fabrication of OLEDs based on Electrodeposition Technology[J]. Chinese Journal of Polymer Science, 2023,41(5):621-639. DOI: 10.1007/s10118-023-2964-9.
Electrodeposition is an effective method for the fabrication of organic films. Electropolymerization and several other special organic electrodeposition techniques are described. Highly luminescent films and OLEDs, in particular AMOLEDs and OLEDs with a super high-resolution of 2822 ppi, have been fabricated by electrodeposition.
Electrodeposition is an old and effective method for the fabrication of organic films. Though electrodeposited organic films have been widely used in various applications, highly luminescent films have been a great challenge because the electrochemically doped state may strongly quench the fluorescence. In the first part of this review, the organic electrodeposition techniques, along with general electropolymerization and other special electrodepositions are introduced. In the second part of the review, we describe how to electrochemically fabricate luminescent films for organic light-emitting diodes (OLEDs). With the rational molecular design and well-controlled electrodeposition process, we have not only demonstrated high-performance OLEDs, but also paved a promising way to practice active-matrix OLEDs (AMOLEDs) and super-resolution OLEDs. In particular, RGB 3 × 3 array OLEDs based on active-matrix substrates, RGB passive-matrix OLEDs (PMOLEDs) with a resolution of 210 ppi, and monochromatic OLEDs with a super-resolution of 2822 ppi have been successfully fabricated. It is highly anticipated that the organic electrodeposition technology is of comparable or perhaps even higher contenders in manufacturing and downscaling OLEDs and AMOLEDs with low-cost and high-resolution for the human-computer interaction fields such as augmented reality (AR), virtual reality (VR),etc,.
ElectrochemistryOrganic electrodepositionElectropolymerizationLuminescent filmsOLEDs
Freudenberger, R.Electrodeposition of gold: a review.Galvanotechnik.,2012,1031664-1672.
The Sigal process for electrodeposition of aluminium.Anti-Corros. Methods Mater.1985,32, 13−13.
Girginov, A.; Tzvetkoff, T. Z.; Bojinov, M.Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salt electrolytes.J. Appl. Electrochem.,1995,25993-1003.
Ogata, Y. H.; Kobayashi, K.; Motoyama, M.Electrochemical metal deposition on silicon.Curr. Opin. Solid State Mater. Sci.,2006,10163-172.DOI:10.1016/j.cossms.2007.02.001http://doi.org/10.1016/j.cossms.2007.02.001.
Srivastava, R. D.; Mukerjee, R. C.Electrodeposition of binary alloys: an account of recent developments.J. Appl. Electrochem.,1976,6321-331.DOI:10.1007/BF00608917http://doi.org/10.1007/BF00608917.
Srivastava, S. C.Electrodeposition of ternary alloys: Developments in 1972–1978.Surf. Technol.,1980,10237-257.DOI:10.1016/0376-4583(80)90082-5http://doi.org/10.1016/0376-4583(80)90082-5.
Srimathi, S. N.; Mayanna, S. M.; Sheshadri, B. S.Electrodeposition of binary magnetic alloys.Surf. Technol.,1982,16277-322.DOI:10.1016/0376-4583(82)90021-8http://doi.org/10.1016/0376-4583(82)90021-8.
Jin, Y.; Yu, H.; Liang, X.Understanding the roles of atomic layer deposition in improving the electrochemical performance of lithium-ion batteries.Appl. Phys. Rev.,2021,8031301DOI:10.1063/5.0048337http://doi.org/10.1063/5.0048337.
Cao, Z.; Yang, S.; Wang, M.; Huang, X.; Li, H.; Yi, J.; Zhong, J.Cu(In,Ga)S2absorber layer prepared for thin film solar cell by electrodeposition of Cu-Ga precursor from deep eutectic solvent.Sol. Energy,2016,13929-35.DOI:10.1016/j.solener.2016.09.018http://doi.org/10.1016/j.solener.2016.09.018.
Turyan, I.; Mandler, D.Two-dimensional polyaniline thin film electrodeposited on a self-assembled monolayer.J. Am. Chem. Soc.,1998,12010733-10742.DOI:10.1021/ja9809760http://doi.org/10.1021/ja9809760.
Biallozor, S.; Kupniewska, A.Conducting polymers electrodeposited on active metals.Synth. Metals,2005,155443-449.DOI:10.1016/j.synthmet.2005.09.002http://doi.org/10.1016/j.synthmet.2005.09.002.
Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S.Electrochemistry of conducting polymers—persistent models and new concepts.Chem. Rev.,2010,1104724-4771.DOI:10.1021/cr900226khttp://doi.org/10.1021/cr900226k.
Zhang, H.; Yao, M.; Wei, J.; Zhang, Y.; Zhang, S.; Gao, Y.; Li, J.; Lu, P.; Yang, B.; Ma, Y.Stable p/n-dopable conducting redox polymers for high-voltage pseudocapacitor electrode materials: structure-performance relationship and detailed investigation into charge-trapping effect.Adv. Energy Mater.,2017,71701063DOI:10.1002/aenm.201701063http://doi.org/10.1002/aenm.201701063.
Zhang, H.; Li, J.; Gu, C.; Yao, M.; Yang, B.; Lu, P.; Ma, Y.High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes.J. Power Sources,2016,332413-419.DOI:10.1016/j.jpowsour.2016.09.137http://doi.org/10.1016/j.jpowsour.2016.09.137.
Zhang, H.; Zhang, Y.; Gu, C.; Ma, Y.Electropolymerized conjugated microporous poly(zinc-porphyrin) films as potential electrode materials in supercapacitors.Adv. Energy Mater.,2015,51402175DOI:10.1002/aenm.201402175http://doi.org/10.1002/aenm.201402175.
Huang, Q.; Chen, J.; Yan, S.; Shao, X.; Dong, Y.; Liu, J.; Li, W.; Zhang, C.New donor-acceptor-donor conjugated polymer with twisted donor-acceptor configuration for high-capacitance electrochromic supercapacitor application.ACS Sustain. Chem. Eng.,2021,913807-13817.DOI:10.1021/acssuschemeng.1c04498http://doi.org/10.1021/acssuschemeng.1c04498.
Li, M.; Patra, A.; Sheynin, Y.; Bendikov, M.Hexyl-derivatized poly(3,4-ethylenedioxyselenophene): novel highly stable organic electrochromic material with high contrast ratio, high coloration efficiency, and low-switching voltage.Adv. Mater.,2009,211707-1711.DOI:10.1002/adma.200802259http://doi.org/10.1002/adma.200802259.
Ma, W.; Qin, L.; Gao, Y.; Zhang, W.; Xie, Z.; Yang, B.; Liu, L.; Ma, Y.A perylene bisimide network for high-performance n-type electrochromism.Chem. Commun.,2016,5213600-13603.DOI:10.1039/C6CC07962Hhttp://doi.org/10.1039/C6CC07962H.
Wang, J.; Ma, W.; Wang, H.; Xie, Z.; Zhang, H.; Ma, Y.A cathodic electrochromic material based on thick perylene bisimide film with high optical contrast and high stability.CCS Chem.,2021,41347-1356.
Wang, J.; Zhang, H.; Ma, Y.Thickness dependence of doping level in conducting polymer films: the optical contrast optimization in electrochromism as a case study.Chin. J. Chem.,2022,40597-602.DOI:10.1002/cjoc.202100754http://doi.org/10.1002/cjoc.202100754.
Wang, B.; Wang, L.; Chen, H.; Jia, Y.; Ma, Y.Electropolymerized triphenylamine network films for high-performance transparent to black electrochromism and capacitance.Adv. Opt. Mater.,2022:10.1002/adom.202201572DOI:10.1002/adom.202201572http://doi.org/10.1002/adom.202201572.
Yan, S.; Fu, H.; Zhang, L.; Dong, Y.; Li, W.; Ouyang, M.; Zhang, C.Conjugated polymer multilayer byin situelectrochemical polymerization for black-to-transmissive eletrochromism.Chem. Eng. J.,2021,406126819DOI:10.1016/j.cej.2020.126819http://doi.org/10.1016/j.cej.2020.126819.
Li, M.; Zhang, J.; Nie, H. J.; Liao, M.; Sang, L.; Qiao, W.; Wang, Z. Y.; Ma, Y.; Zhong, Y. W.; Ariga, K.In situswitching layer-by-layer assembly: one-pot rapid layer assemblyviaalternation of reductive and oxidative electropolymerization.Chem. Commun.,2013,496879-6881.DOI:10.1039/c3cc43629bhttp://doi.org/10.1039/c3cc43629b.
Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhang, K.; Zhong, C.; Zhang, H.; Pan, Y.; Lv, Y.; Yang, Y.; Li, F.; Zhang, S.; Huang, F.; Ma, Y.Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics.Adv. Mater.,2013,253443-3448.DOI:10.1002/adma.201300839http://doi.org/10.1002/adma.201300839.
Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhong, C.; Zhang, H.; Lv, Y.; Li, F.; Huang, F.; Ma, Y.Achieving high efficiency of PTB7-based polymer solar cellsviaintegrated optimization of both anode and cathode interlayers.Adv. Energy Mater.,2014,41301771DOI:10.1002/aenm.201301771http://doi.org/10.1002/aenm.201301771.
Gu, C.; Zhang, Z.; Sun, S.; Pan, Y.; Zhong, C.; Lv, Y.; Li, M.; Ariga, K.; Huang, F.; Ma, Y.In situelectrochemical deposition and doping of C60 films applied to high-performance inverted organic photovoltaics.Adv. Mater.,2012,245727-5731.DOI:10.1002/adma.201202569http://doi.org/10.1002/adma.201202569.
Zhao, M.; Zhang, H.; Gu, C.; Ma, Y.Electrochemical polymerization: an emerging approach for fabricating high-quality luminescent films and super-resolution OLEDs.J. Mater. Chem. C,2020,85310-5320.DOI:10.1039/C9TC07028Ahttp://doi.org/10.1039/C9TC07028A.
Bard, A.; Faulkner, L. InElectrochemical methods: fundamentals and applications, 2ndEd., John Wiley & Sons, New York,2001,p. 226−243.
Bard, A.; Faulkner, L. InElectrochemical methods: fundamentals and applications, 2ndEd., John Wiley & Sons, New York,2001,p. 589−593.
Noori, A.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F.Towards establishing standard performance metrics for batteries, supercapacitors and beyond.Chem. Soc. Rev.,2019,481272-1341.DOI:10.1039/C8CS00581Hhttp://doi.org/10.1039/C8CS00581H.
Le, T.-H.; Kim, Y.; Yoon, H.Electrical and electrochemical properties of conducting polymers.Polymers,2017,9150DOI:10.3390/polym9040150http://doi.org/10.3390/polym9040150.
Heinze, J. InElectronically conducting polymers, Electrochemistry IV, Ed. by Steckhan, E., Springer, Berlin Heidelberg,1990; p 1-47.
Diaz, A. F.; Logan, J. A.Electroactive polyaniline films.J. Electroanal. Chem. Interfacial Electrochem.,1980,111111-114.DOI:10.1016/S0022-0728(80)80081-7http://doi.org/10.1016/S0022-0728(80)80081-7.
Genies, E. M.; Syed, A. A.Polypyrrole and polyN-methylpyrrole —an electrochemical study in an aqueous medium.Synth. Metals,1984,1021-30.DOI:10.1016/0379-6779(84)90076-6http://doi.org/10.1016/0379-6779(84)90076-6.
Vorotyntsev, M. A.; Heinze, J.Charging process in electron conducting polymers: dimerization model.Electrochim. Acta,2001,463309-3324.DOI:10.1016/S0013-4686(01)00623-5http://doi.org/10.1016/S0013-4686(01)00623-5.
Villeret, B.; Nechtschein, M.Memory effects in conducting polymers.Phys. Rev. Lett.,1989,631285-1287.DOI:10.1103/PhysRevLett.63.1285http://doi.org/10.1103/PhysRevLett.63.1285.
Kalaji, M.; Nyholm, L.; Peter, L. M.Chronopotentiometric studies of polyaniline films.J. Electroanal. Chem.,1992,325269-284.DOI:10.1016/0022-0728(92)80118-Nhttp://doi.org/10.1016/0022-0728(92)80118-N.
Zotti, G.; Schiavon, G.; Zecchin, S.Irreversible processes in the electrochemical reduction of polythiophenes. Chemical modifications of the polymer and charge-trapping phenomena.Synth. Metals,1995,72275-281.DOI:10.1016/0379-6779(95)03280-0http://doi.org/10.1016/0379-6779(95)03280-0.
Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P.Electrochemical polymerization of pyrrole.J. Chem. Soc., Chem. Commun.,1979:635-636.
Tourillon, G.; Garnier, F.New electrochemically generated organic conducting polymers.J. Electroanal. Chem. Interfacial Electrochem.,1982,135173-178.DOI:10.1016/0022-0728(82)90015-8http://doi.org/10.1016/0022-0728(82)90015-8.
Ambrose, J. F.; Nelson, R. F.Anodic oxidation pathways of carbazoles: I. Carbazole andN-substituted derivatives.J. Electrochem. Soc.,1968,1151159DOI:10.1149/1.2410929http://doi.org/10.1149/1.2410929.
Utley, J. H. P.; Gruber, J.Electrochemical synthesis of poly(p-xylylenes) (PPXs) and poly(p-phenylenevinylenes) (PPVs) and the study of xylylene (quinodimethane) intermediates; an underrated approach.J. Mater. Chem.,2002,121613-1624.DOI:10.1039/b200411ahttp://doi.org/10.1039/b200411a.
Bandeira, M. C. E.; Crayston, J. A.; Franco, C. V.; Glidle, A.Electrochemical deposition of poly(trans-[RuCl2(4-vinylpyridine)4]) and its reductive desorption: cyclic voltammetry and electrochemical quartz crystal microbalance studies.Phys. Chem. Chem. Phys.,2007,91003-1012.DOI:10.1039/B613242Ahttp://doi.org/10.1039/B613242A.
Li, M.; Kang, S.; Du, J.; Zhang, J.; Wang, J.; Ariga, K.Junction-controlled topological polymerization.Angew. Chem. Int. Ed.,2018,574936-4939.DOI:10.1002/anie.201713026http://doi.org/10.1002/anie.201713026.
Zotti, G.; Schiavon, G.; Zecchin, S.; Morin, J. F.; Leclerc, M.Electrochemical, conductive, and magnetic properties of 2,7-carbazole-based conjugated polymers.Macromolecules,2002,352122-2128.DOI:10.1021/ma011311chttp://doi.org/10.1021/ma011311c.
Iraqi, A.; Wataru, I.Preparation and properties of 2,7-linkedN-alkyl-9H-carbazole main-chain polymers.Chem. Mater.,2004,16442-448.DOI:10.1021/cm031078shttp://doi.org/10.1021/cm031078s.
Fu, Y.; Bo, Z.Synthesis, optical, and electrochemical properties of the high-molecular-weight conjugated polycarbazoles.Macromol. Rapid Commun.,2005,261704-1710.DOI:10.1002/marc.200500478http://doi.org/10.1002/marc.200500478.
Downard, A. J.; Pletcher, D.A study of the conditions for the electrodeposition of polythiophen in acetonitrile.J. Electroanal. Chem. Interfacial Electrochem.,1986,206147-152.DOI:10.1016/0022-0728(86)90264-0http://doi.org/10.1016/0022-0728(86)90264-0.
Hwang, B. J.; Santhanam, R.; Wu, C. R.; Tsai, Y. W.Nucleation and growth mechanism for the electropolymerization of aniline in trifluoroacetic acid/lithium perchlorate/propylene carbonate medium.J. Solid State Electrochem.,2003,7678-683.DOI:10.1007/s10008-003-0370-3http://doi.org/10.1007/s10008-003-0370-3.
Bund, A.; Baba, A.; Berg, S.; Johannsmann, D.; Lübben, J.; Wang, Z.; Knoll, W.Combining surface plasmon resonance and quartz crystal microbalance for thein situinvestigation of the electropolymerization and doping/dedoping of poly(pyrrole).J. Phys. Chem. B,2003,1076743-6747.DOI:10.1021/jp034043ohttp://doi.org/10.1021/jp034043o.
Kvarnström, C.; Bilger, R.; Ivaska, A.; Heinze, J.An electrochemical quartz crystal microbalance study on polymerization of oligo-p-phenylenes.Electrochim. Acta,1998,43355-366.DOI:10.1016/S0013-4686(97)00069-8http://doi.org/10.1016/S0013-4686(97)00069-8.
Karon, K.; Lapkowski, M.Carbazole electrochemistry: a short review.J. Solid State Electrochem.,2015,192601-2610.DOI:10.1007/s10008-015-2973-xhttp://doi.org/10.1007/s10008-015-2973-x.
Tanaka, K.; Shichiri, T.; Wang, S.; Yamabe, T.A study of the electropolymerization of thiophene.Synth. Metals,1988,24203-215.DOI:10.1016/0379-6779(88)90258-5http://doi.org/10.1016/0379-6779(88)90258-5.
Diaz, A. F.; Castillo, J. I.; Logan, J. A.; Lee, W. Y.Electrochemistry of conducting polypyrrole films.J. Electroanal. Chem. Interfacial Electrochem.,1981,129115-132.DOI:10.1016/S0022-0728(81)80008-3http://doi.org/10.1016/S0022-0728(81)80008-3.
Genies, E. M.; Bidan, G.; Diaz, A. F.Spectroelectrochemical study of polypyrrole films.J. Electroanal. Chem. Interfacial Electrochem.,1983,149101-113.DOI:10.1016/S0022-0728(83)80561-0http://doi.org/10.1016/S0022-0728(83)80561-0.
Heinze, J.; John, H.; Dietrich, M.; Tschuncky, P..σ-“Dimers”—key intermediates and products during generation and redox switching of conjugated oligomers and polymers.Synth. Metal,2001,11949-52.DOI:10.1016/S0379-6779(00)00676-7http://doi.org/10.1016/S0379-6779(00)00676-7.
Audebert, P.; Hapiot, P.Fast electrochemical studies of the polymerization mechanisms of pyrroles and thiophenes. Identification of the first steps. Existence ofπ-dimers in solution.Synth. Metals,1995,7595-102.DOI:10.1016/0379-6779(95)03396-2http://doi.org/10.1016/0379-6779(95)03396-2.
Guyard, L.; Hapiot, P.; Neta, P.Redox chemistry of bipyrroles: further insights into the oxidative polymerization mechanism of pyrrole and oligopyrroles.J. Phys. Chem. B,1997,1015698-5706.DOI:10.1021/jp9706083http://doi.org/10.1021/jp9706083.
Andrieux, C. P.; Audebert, P.; Hapiot, P.; Saveant, J. M.Observation of the cation radicals of pyrrole and of some substituted pyrroles in fast-scan cyclic voltammetry. Standard potentials and lifetimes.J. Am. Chem. Soc.,1990,1122439-2440.DOI:10.1021/ja00162a065http://doi.org/10.1021/ja00162a065.
Garcia, P.; Pernaut, J. M.; Hapiot, P.; Wintgens, V.; Valat, P.; Garnier, F.; Delabouglise, D.Effect of end substitution on electrochemical and optical properties of oligothiophenes.J. Phys. Chem.,1993,97513-516.DOI:10.1021/j100104a040http://doi.org/10.1021/j100104a040.
Asavapiriyanont, S.; Chandler, G. K.; Gunawardena, G. A.; Pletcher, D.The electrodeposition of polypyrrole films from aqueous solutions.J. Electroanal. Chem. Interfacial Electrochem.,1984,177229-244.DOI:10.1016/0022-0728(84)80225-9http://doi.org/10.1016/0022-0728(84)80225-9.
El-Desoky, H.; Heinze, J.; Ghoneim, M. M.Electrodimerization of cyano-substituted derivatives of anthracene and naphthalene.Electrochem. Commun.,2001,3697-702.DOI:10.1016/S1388-2481(01)00241-7http://doi.org/10.1016/S1388-2481(01)00241-7.
Smie, A.; Heinze, J.Reversible dimerization of diphenylpolyene radical cations: an alternative to the bipolaron model.Angew. Chem. Int. Ed.,1997,36363-367.DOI:10.1002/anie.199703631http://doi.org/10.1002/anie.199703631.
Heinze, J.; Willmann, C.; Bäuerle, P.Evidence forσdimerization during anodic redox switching of 1,3,5-tripyrrolidinobenzene: a new molecular switch.Angew. Chem. Int. Ed.,2001,402861-2864.DOI:10.1002/1521-3773(20010803)40:15<2861::AID-ANIE2861>3.0.CO;2-Thttp://doi.org/10.1002/1521-3773(20010803)40:15<2861::AID-ANIE2861>3.0.CO;2-T.
Merz, A.; Kronberger, J.; Dunsch, L.; Neudeck, A.; Petr, A.; Parkanyi, L.Radical dimerization of 5,5’-diphenyl-3,3’,4,4’-tetramethoxy-2,2’-bipyrrole:πdimer in the crystal,σdimer in solution.Angew. Chem. Int. Ed.,1999,381442-1446.DOI:10.1002/(SICI)1521-3773(19990517)38:10<1442::AID-ANIE1442>3.0.CO;2-Rhttp://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1442::AID-ANIE1442>3.0.CO;2-R.
Andrieux, C. P.; Hapiot, P.; Audebert, P.; Guyard, L.; Dinh An, M. N.; Groenendaal, L.; Meijer, E. W.Substituent effects on the electrochemical properties of pyrroles and small oligopyrroles.Chem. Mater.,1997,9723-729.DOI:10.1021/cm9604219http://doi.org/10.1021/cm9604219.
Meerholz, K.; Heinze, J.Electrochemical solution and solid-state investigations on conjugated oligomers and polymers of theα-thiophene and thep-phenylene series.Electrochim. Acta,1996,411839-1854.DOI:10.1016/0013-4686(95)00503-Xhttp://doi.org/10.1016/0013-4686(95)00503-X.
Zhou, M.; Heinze, J.Electropolymerization of pyrrole and electrochemical study of polypyrrole. 3. Nature of “water effect” in acetonitrile.J. Phys. Chem. B,1999,1038451-8457.DOI:10.1021/jp990162lhttp://doi.org/10.1021/jp990162l.
Zotti, G.; Schiavon, G.; Berlin, A.; Pagani, G.The role of water in the electrochemical polymerization of pyrroles.Electrochim. Acta,1989,34881-884.DOI:10.1016/0013-4686(89)87124-5http://doi.org/10.1016/0013-4686(89)87124-5.
Beck, F.; Oberst, M.; Jansen, R.On the mechanism of the filmforming electropolymerization of pyrrole in acetonitrile with water.Electrochim. Acta,1990,351841-1848.DOI:10.1016/0013-4686(90)87088-Jhttp://doi.org/10.1016/0013-4686(90)87088-J.
Heinze, J.; Mortensen, J.; Hinkelmann, K.Some new electrochemical results on the properties of conducting polymers.Synth. Metals,1987,21209-214.DOI:10.1016/0379-6779(87)90088-9http://doi.org/10.1016/0379-6779(87)90088-9.
Obretenov, W.; Schmidt, U.; Lorenz, W. J.; Staikov, G.; Budevski, E.; Carnal, D.; Müller, U.; Siegenthaler, H.; Schmidt, E.Underpotential deposition and electrocrystallization of metals an atomic view by scanning tunneling microscopy.J. Electrochem. Soc.,1993,140692DOI:10.1149/1.2056144http://doi.org/10.1149/1.2056144.
Fleischmann, M.; and H. R. Thirsk. InAdvances in Electrochemistry and Electrochemical Engineering, Wiley-Interscience,New York,1963, p. 123.
Heinze, J.; Rasche, A.; Pagels, M.; Geschke, B.On the origin of the so-called nucleation loop during electropolymerization of conducting polymers.J. Phys. Chem. B,2007,111989-997.DOI:10.1021/jp066413phttp://doi.org/10.1021/jp066413p.
Randriamahazaka, H.; Sini, G.; Tran Van, F.Electrodeposition mechanisms and electrochemical behavior of poly(3,4-ethylenedithiathiophene).J. Phys. Chem. C,2007,1114553-4560.DOI:10.1021/jp068525mhttp://doi.org/10.1021/jp068525m.
Andrieux, C. P.; Dumas-Bouchiat, J. M.; Saveant, J. M.Homogeneous redox catalysis of electrochemical reactions: Part I. Introduction.J. Electroanal. Chem. Interfacial Electrochem.,1978,8739-53.DOI:10.1016/S0022-0728(78)80378-7http://doi.org/10.1016/S0022-0728(78)80378-7.
del Valle, M. A.; Cury, P.; Schrebler, R.Solvent effect on the nucleation and growth mechanisms of poly(thiophene).Electrochim. Acta,2002,48397-405.DOI:10.1016/S0013-4686(02)00685-0http://doi.org/10.1016/S0013-4686(02)00685-0.
Villareal, I.; Morales, E.; Acosta, J. L.Nucleation and growth of LiCF3SO3-doped polyalkylthiophenes.Polymer,2001,423779-3789.DOI:10.1016/S0032-3861(00)00763-1http://doi.org/10.1016/S0032-3861(00)00763-1.
Bade, K.; Tsakova, V.; Schultze, J. W.Nucleation, growth and branching of polyaniline from microelectrode experiments.Electrochim. Acta,1992,372255-2261.DOI:10.1016/0013-4686(92)85120-Ahttp://doi.org/10.1016/0013-4686(92)85120-A.
Hwang, B. J.; Santhanam, R.; Lin, Y. L.Nucleation and growth mechanism of electropolymerization of polypyrrole on gold/highly oriented pyrolytic graphite electrode.J. Electrochem. Soc.,2000,1472252DOI:10.1149/1.1393516http://doi.org/10.1149/1.1393516.
Innocenti, M.; Loglio, F.; Pigani, L.; Seeber, R.; Terzi, F.; Udisti, R.In situatomic force microscopy in the study of electrogeneration of polybithiophene on Pt electrode.Electrochim. Acta2005,50, 1497-1503.
Meerholz, K.; Heinze, J.Electrochemical solid-state studies on oligomericp-phenylenes as model compounds for conductive polymers.Angew. Chem. Int. Ed.,1990,29692-695.DOI:10.1002/anie.199006921http://doi.org/10.1002/anie.199006921.
Li, M.C3−C3′ and C6−C6′ oxidative couplings of carbazoles.Chem. Eur. J.,2019,251142-1151.DOI:10.1002/chem.201803246http://doi.org/10.1002/chem.201803246.
Wang, Y.; Li, M.Controlled electropolymerization based on self-dimerizations of monomers.Curr. Opin. Electrochem.,2022,33100952DOI:10.1016/j.coelec.2022.100952http://doi.org/10.1016/j.coelec.2022.100952.
Shi, G.; Jin, S.; Xue, G.; Li, C.A conducting polymer film stronger than aluminum.Science,1995,267994-996.DOI:10.1126/science.267.5200.994http://doi.org/10.1126/science.267.5200.994.
Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R.Electrochromic organic and polymeric materials for display applications.Displays,2006,272-18.DOI:10.1016/j.displa.2005.03.003http://doi.org/10.1016/j.displa.2005.03.003.
Privett, B. J.; Shin, J. H.; Schoenfisch, M. H.Electrochemical sensors.Anal. Chem.,2010,824723-4741.DOI:10.1021/ac101075nhttp://doi.org/10.1021/ac101075n.
Yan, S.; Fu, H.; Dong, Y.; Li, W.; Dai, Y.; Zhang, C.Synthesis, electrochemistry and electrochromic properties of donor-acceptor conjugated polymers based on swivel-cruciform monomers with different central cores.Electrochim. Acta,2020,354136672DOI:10.1016/j.electacta.2020.136672http://doi.org/10.1016/j.electacta.2020.136672.
Li, W.; Yuan, F.; Xu, N.; Mei, S.; Chen, Z.; Zhang, C.Triphenylamine-triazine polymer materials obtained by electrochemical polymerization: electrochemistry stability, anions trapping behavior and electrochromic-supercapacitor application.Electrochim. Acta,2021,384138344DOI:10.1016/j.electacta.2021.138344http://doi.org/10.1016/j.electacta.2021.138344.
Li, M.; Tang, S.; Shen, F.; Liu, M.; Xie, W.; Xia, H.; Liu, L.; Tian, L.; Xie, Z.; Lu, P.; Hanif, M.; Lu, D.; Cheng, G.; Ma, Y.Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes.Chem. Commun.,2006,323393-3395.DOI:10.1039/b607242ahttp://doi.org/10.1039/b607242a.
Maeda, H.; Sakamoto, R.; Nishihara, H.Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes.Coord. Chem. Rev.,2017,346139-149.DOI:10.1016/j.ccr.2017.02.013http://doi.org/10.1016/j.ccr.2017.02.013.
Wang, J.; Wei, C.; Li, S.; Hao, Q.; Shi, J.; Liu, J.; Li, L.; Chen, Y.; Wang, Y.; Li, Y.; Shen, L.; Zhang, X.; Hong, W.; Li, M.Monolayer nanoarchitecture of crystalline metallopolymers by electrochemical iterative growth.Cell Rep. Phys. Sci.,2022,3100852DOI:10.1016/j.xcrp.2022.100852http://doi.org/10.1016/j.xcrp.2022.100852.
Zhang, J.; Du, J.; Wang, J.; Wang, Y.; Wei, C.; Li, M.Vertical step-growth polymerization driven by electrochemical stimuli from an electrode.Angew. Chem. Int. Ed.,2018,5716698-16702.DOI:10.1002/anie.201809567http://doi.org/10.1002/anie.201809567.
Wang, J.; Zhang, H.; Li, S.; Ding, C.; Zhao, Y.; Long, X.; Wei, C.; Wang, Y.; Li, Y.; Shen, L.; Cui, S.; Hong, W.; Li, M.Crystalline unipolymer monolayer with high modulus and conductivity.Angew. Chem. Int. Ed.,2022,62e202216838DOI:10.1002/anie.202216838http://doi.org/10.1002/anie.202216838.
Zhang, J.; Wang, J.; Wei, C.; Wang, Y.; Xie, G.; Li, Y.; Li, M.Rapidly sequence-controlled electrosynthesis of organometallic polymers.Nat. Commun.,2020,112530DOI:10.1038/s41467-020-16255-zhttp://doi.org/10.1038/s41467-020-16255-z.
Narita, A.; Wang, X. Y.; Feng, X.; Müllen, K.New advances in nanographene chemistry.Chem. Soc. Rev.,2015,446616-6643.DOI:10.1039/C5CS00183Hhttp://doi.org/10.1039/C5CS00183H.
Müllen, K.Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience.ACS Nano,2014,86531-6541.DOI:10.1021/nn503283dhttp://doi.org/10.1021/nn503283d.
Seyler, H.; Purushothaman, B.; Jones, D. J.; Holmes, A. B.; Wong, W. W. H.Hexa-peri-hexabenzocoronene in organic electronics.Pure Appl. Chem.,2012,841047-1067.DOI:10.1351/PAC-CON-11-09-24http://doi.org/10.1351/PAC-CON-11-09-24.
Wu, J.; Pisula, W.; Müllen, K.Graphenes as potential material for electronics.Chem. Rev.,2007,107718-747.DOI:10.1021/cr068010rhttp://doi.org/10.1021/cr068010r.
Qin, L.; Zhang, Y.; Wu, X.; Nian, L.; Xie, Z.; Liu, L.; Ma, Y..In situelectrochemical synthesis and deposition of discotic hexa-peri-hexabenzocoronene molecules on electrodes: self-assembled structure, redox properties, and application for supercapacitor.Small,2015,113028-3034.DOI:10.1002/smll.201403734http://doi.org/10.1002/smll.201403734.
Zeng, C.; Wang, B.; Zhang, H.; Sun, M.; Huang, L.; Gu, Y.; Qiu, Z.; Müllen, K.; Gu, C.; Ma, Y.Electrochemical synthesis, deposition, and doping of polycyclic aromatic hydrocarbon films.J. Am. Chem. Soc.,2021,1432682-2687.DOI:10.1021/jacs.0c13298http://doi.org/10.1021/jacs.0c13298.
Röse, P.; Emge, S.; König, C. A.; Hilt, G.Efficient oxidative coupling of arenesviaelectrochemical regeneration of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) under mild reaction conditions.Adv. Synth. Catal.,2017,3591359-1372.DOI:10.1002/adsc.201601331http://doi.org/10.1002/adsc.201601331.
Zeng, C.; Zheng, W.; Xu, H.; Osella, S.; Ma, W.; Wang, H. I.; Qiu, Z.; Otake, K. I.; Ren, W.; Cheng, H.; Müllen, K.; Bonn, M.; Gu, C.; Ma, Y.Electrochemical deposition of a single-crystalline nanorod polycyclic aromatic hydrocarbon film with efficient charge and exciton transport.Angew. Chem. Int. Ed.,2022,61e202115389DOI:10.1002/anie.202115389http://doi.org/10.1002/anie.202115389.
Wang, L.; Xu, C.; Zhang, W.; Zhang, Q.; Zhao, M.; Zeng, C.; Jiang, Q.; Gu, C.; Ma, Y.Electrocleavage synthesis of solution-processed, imine-linked, and crystalline covalent organic framework thin films.J. Am. Chem. Soc.,2022,1448961-8968.DOI:10.1021/jacs.1c13072http://doi.org/10.1021/jacs.1c13072.
Ghosh, A.; Donoghue, E. P.; Khayrullin, I.; Ali, T.; Wacyk, I.; Tice, K.; Vazan, F.; Sziklas, L.; Fellowes, D.; Draper, R.Directly patterened 2645 PPI full color OLED microdisplay for head mounted wearables.SID Symp. Dig. Tech. Pap.,2016,47837-840.DOI:10.1002/sdtp.10805http://doi.org/10.1002/sdtp.10805.
Östergård, T.; Kvarnström, C.; Stubb, H.; Ivaska, A.Electrochemically prepared light-emitting diodes of poly(para-phenylene).Thin Solid Films,1997,31158-61.DOI:10.1016/S0040-6090(97)00451-3http://doi.org/10.1016/S0040-6090(97)00451-3.
Damlin, P.; Östergård, T.; Ivaska, A.; Stubb, H.Light-emitting diodes of poly(p-phenylene vinylene) films electrochemically polymerized by cyclic voltammetry on ITO.Synth. Metals,1999,102947-948.DOI:10.1016/S0379-6779(98)00971-0http://doi.org/10.1016/S0379-6779(98)00971-0.
Lu, G.; Shi, G.Electrochemical polymerization of pyrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer.J. Electroanal. Chem.,2006,586154-160.DOI:10.1016/j.jelechem.2005.10.020http://doi.org/10.1016/j.jelechem.2005.10.020.
Xia, C.; Advincula, R. C.; Baba, A.; Knoll, W.Electrochemical patterning of a polyfluorene precursor polymer from a microcontact printed (μCP) monolayer.Chem. Mater.,2004,162852-2856.DOI:10.1021/cm049544ghttp://doi.org/10.1021/cm049544g.
Tang, S.; Liu, M. R.; Lu, P.; Xia, H.; Li, M.; Xie, Z. Q.; Shen, F. Z.; Gu, C.; Wang, H. P.; Yang, B.; Ma, Y. G.A molecular glass for deep-blue organic light-emitting diodes comprising a 9,9’-spirobifluorene core and peripheral carbazole groups.Adv. Funct. Mater.,2007,172869-2877.DOI:10.1002/adfm.200700175http://doi.org/10.1002/adfm.200700175.
Tang, S.; Liu, M.; Gu, C.; Zhao, Y.; Lu, P.; Lu, D.; Liu, L.; Shen, F.; Yang, B.; Ma, Y.Synthesis and electrochemical properties of peripheral carbazole functional ter(9,9-spirobifluorene)s.J. Org. Chem.,2008,734212-4218.DOI:10.1021/jo8006094http://doi.org/10.1021/jo8006094.
Zhang, M.; Xue, S.; Dong, W.; Wang, Q.; Fei, T.; Gu, C.; Ma, Y.Highly-efficient solution-processed OLEDs based on new bipolar emitters.Chem. Commun.,2010,463923-3925.DOI:10.1039/c001170chttp://doi.org/10.1039/c001170c.
Sezai Sarac, A.; Ates, M.; Parlak, E. A.Electrolyte and solvent effects of electrocoated polycarbazole thin films on carbon fiber microelectrodes.J. Appl. Electrochem.,2006,36889-898.DOI:10.1007/s10800-006-9145-8http://doi.org/10.1007/s10800-006-9145-8.
Li, M.; Tang, S.; Shen, F.; Liu, M.; Xie, W.; Xia, H.; Liu, L.; Tian, L.; Xie, Z.; Lu, P.; Hanif, M.; Lu, D.; Cheng, G.; Ma, Y.Electrochemically deposited organic luminescent films: the effects of deposition parameters on morphologies and luminescent efficiency of films.J. Phys. Chem. B,2006,11017784-17789.DOI:10.1021/jp0631230http://doi.org/10.1021/jp0631230.
Wei, Z.; Xu, J.; Nie, G.; Du, Y.; Pu, S.Low-potential electrochemical polymerization of carbazole and its alkyl derivatives.J. Electroanal. Chem.,2006,589112-119.DOI:10.1016/j.jelechem.2006.01.023http://doi.org/10.1016/j.jelechem.2006.01.023.
Gu, C.; Tang, S.; Yang, B.; Liu, S.; Lv, Y.; Wang, H.; Yang, S.; Hanif, M.; Lu, D.; Shen, F.; Ma, Y.Almost completely dedoped electrochemically deposited luminescent films exhibiting excellent LED performance.Electrochim. Acta,2009,547006-7011.DOI:10.1016/j.electacta.2009.07.023http://doi.org/10.1016/j.electacta.2009.07.023.
Gu, C.Controllable Fabrications of Highly Fluorescent Electrochemical Polymerization Films and Their Electroluminescent Devices, Thesis, Jilin University,2012.
Li, M.; Tang, S.; Shen, F.; Liu, M.; Li, F.; Lu, P.; Lu, D.; Hanif, M.; Ma, Y.The counter anionic size effects on electrochemical, morphological, and luminescence properties of electrochemically deposited luminescent films.J. Electrochem. Soc.,2008,155H287DOI:10.1149/1.2844453http://doi.org/10.1149/1.2844453.
Li, M.The Application of Cyclic Voltammetry in Electrosynthesis and Analysis of Organic Luminescent Materials, Thesis, Jilin University,2007.
Gu, C.; Fei, T.; Zhang, M.; Li, C.; Lu, D.; Ma, Y.Electrochemical polymerization films for highly efficient electroluminescent devices and RGB color pixel.Electrochem. Commun.,2010,12553-556.DOI:10.1016/j.elecom.2010.01.041http://doi.org/10.1016/j.elecom.2010.01.041.
Lv, Y.; Yao, L.; Gu, C.; Xu, Y.; Zhang, Y.; Xie, Z.; Liu, L.; Ma, Y.Cross-linked luminescent filmsviaelectropolymerization of multifunctional precursors for highly efficient electroluminescence.Polym. Chem.,2013,42090-2096.DOI:10.1039/c3py21075hhttp://doi.org/10.1039/c3py21075h.
Lv, Y.Electrodeposited Patterning Organic Luminescent Films and Their Applications for Display Devices, Thesis, Jilin University,2013.
Gu, C.; Dong, W.; Yao, L.; Lv, Y.; Zhang, Z.; Lu, D.; Ma, Y.Cross-linked multifunctional conjugated polymers prepared byin situelectrochemical deposition for a highly-efficient blue-emitting and electron-transport layer.Adv. Mater.,2012,242413-2417.DOI:10.1002/adma.201200559http://doi.org/10.1002/adma.201200559.
Gu, C.; Fei, T.; Lv, Y.; Feng, T.; Xue, S.; Lu, D.; Ma, Y.Color-stable white electroluminescence based on a cross-linked network film prepared by electrochemical copolymerization.Adv. Mater.,2010,222702-2705.DOI:10.1002/adma.201000347http://doi.org/10.1002/adma.201000347.
Sax, S.; Rugen-Penkalla, N.; Neuhold, A.; Schuh, S.; Zojer, E.; List, E. J. W.; Müllen, K.Efficient blue-light-emitting polymer heterostructure devices: the fabrication of multilayer structures from orthogonal solvents.Adv. Mater.,2010,222087-2091.DOI:10.1002/adma.200903076http://doi.org/10.1002/adma.200903076.
Köhnen, A.; Riegel, N.; Kremer, J. H. W. M.; Lademann, H.; Müller, D. C.; Meerholz, K.The simple way to solution-processed multilayer OLEDs—layered block-copolymer networks by living cationic polymerization.Adv. Mater.,2009,21879-884.DOI:10.1002/adma.200801556http://doi.org/10.1002/adma.200801556.
Gu, C.; Fei, T.; Yao, L.; Lv, Y.; Lu, D.; Ma, Y.Multilayer polymer stacking byin situelectrochemical polymerization for color-stable white electroluminescence.Adv. Mater.,2011,23527-530.DOI:10.1002/adma.201003027http://doi.org/10.1002/adma.201003027.
Gu, C.; Liu, H.; Hu, D.; Zhang, W.; Lv, Y.; Lu, P.; Lu, D.; Ma, Y.Controllable optical, electrical, and morphologic properties of 3,4-ethylenedioxythiophene based electrocopolymerization films.Macromol. Rapid Commun.,2011,321014-1019.DOI:10.1002/marc.201100194http://doi.org/10.1002/marc.201100194.
Li, M.; Tang, S.; Lu, D.; Shen, F.; Liu, M.; Wang, H.; Lu, P.; Hanif, M.; Ma, Y.Electrochemical deposition of patterning and highly luminescent organic films for light emitting diodes.Semicond. Sci. Technol.,2007,22855DOI:10.1088/0268-1242/22/8/004http://doi.org/10.1088/0268-1242/22/8/004.
Lv, Y.; Yao, L.; Gu, C.; Xu, Y.; Liu, D.; Lu, D.; Ma, Y.Electroactive self-assembled monolayers for enhanced efficiency and stability of electropolymerized luminescent films and devices.Adv. Funct. Mater.,2011,212896-2900.DOI:10.1002/adfm.201100467http://doi.org/10.1002/adfm.201100467.
R.Wang.Application of Electrochemical Polymerization Luminescent Films in Organic Light-emitting Display and Their Basic Issues, Thesis, Jilin University,2018.
Wang, R.; Zhang, D.; Xiong, Y.; Zhou, X.; Liu, C.; Chen, W.; Wu, W.; Zhou, L.; Xu, M.; Wang, L.; Liu, L.; Peng, J.; Ma, Y.; Cao, Y.TFT-directed electroplating of RGB luminescent films without a vacuum or mask toward a full-color AMOLED pixel matrix.ACS Appl. Mater. Interfaces,2018,1017519-17525.DOI:10.1021/acsami.8b04487http://doi.org/10.1021/acsami.8b04487.
0
浏览量
43
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构