a.State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
b.Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
zbli@qust.edu.cn
Scan for full text
Facile Synthesis of Polycarbonate Diol
Xiao-Wu Wang, Ji-Wen Hui, Yu-Tao Li, et al. Facile Synthesis of Polycarbonate Diol
Facile Synthesis of Polycarbonate Diol
Xiao-Wu Wang, Ji-Wen Hui, Yu-Tao Li, et al. Facile Synthesis of Polycarbonate Diol
Well-defined PCHC doils can be prepared via copolymerization of CO,2,and cyclohexene oxide catalysed by a combination of one-component phosphonium borane Lewis pair and water.
Well-defined polycarbonate diol was successfully synthesized through a strategy using a combination of organocatalyst and water. Such strategy was less developed in organocatalyzed polymerization and frequently regarded as side reactions. Herein, one-component phosphonium borane Lewis pairs,PB1,−,PB8,were successfully applied in the copolymerization of CO,2,and cyclohexene oxide (CHO) to generate poly(CHO-,alt,-CO,2,) carbonate (PCHC). Parameters of linker length and counter anion effects on the catalyst activity were investigated. It was found that Lewis pair,PB3,served as a dual initiator and catalyst in the copolymerization of CHO and CO,2,with or without the presence of water. In contrast, Lewis pair,PB8,can serve as a true catalyst for the preparation of well-defined,α,ω,-hydroxyl PCHC diols. This was achieved by introducing a labile CF,3,COO group as counter anion through anion exchange reaction while water molecules acted as chain transfer agents. The function of trifluoroacetate group in the polymerization process was investigated in detail and possible mechanism was proposed. Upon changing the amount of water and catalyst loading, PCHC diols with varied molecular weight (1.5 kg/mol to 7.5 kg/mol), low dispersities (,Ð,<,1.2) and carbonate content (,>,99%) could be easily obtained. The low molecular weight PCHC diol was used as a bifunctional macroinitiator for the ring-opening polymerization of L-lactide (LLA) to afford ABA triblock copolymer in one-pot synthesis.
PolycarbonatePhosphonium borane Lewis pairCO2utilizationOrganocatalysisRing-opening polymerization
Williams, C. K.; Hillmyer, M. A.Polymers from renewable resources: a perspective for a special issue of polymer reviews.Polym. Rev.,2008,481-10.DOI:10.1080/15583720701834133http://doi.org/10.1080/15583720701834133.
Heldebrant, D. J.; Kothandaraman, J.; Dowell, N. M.; Brickett, L.Next steps for solvent-based CO2capture; integration of capture, conversion, and mineralisation.Chem. Sci.,2022,136445-6456.DOI:10.1039/D2SC00220Ehttp://doi.org/10.1039/D2SC00220E.
Inoue, S.; Koinuma, H.; Tsuruta, T.Copolymerization of carbon dioxide and epoxide.J. Polym. Sci., Part B: Polym. Lett.,1969,7287-292.DOI:10.1002/pol.1969.110070408http://doi.org/10.1002/pol.1969.110070408.
Liu, B. Y.; Zhao, X. J.; Wang, X. H.; Wang, F. S.Copolymerization of carbon dioxide and propylene oxide with Ln(CCl3COO)3-based catalyst: The role of rare-earth compound in the catalytic system.J. Polym. Sci., Part A: Polym. Chem.,2001,392751-2754.DOI:10.1002/pola.1253http://doi.org/10.1002/pola.1253.
Qin, Y. S.; Chen, L. J.; Wang, X. H.; Zhao, X. J.; Wang, F. S.Alternating copolymerization of cyclohexene oxide and carbon dioxide under cobalt porphyrin catalyst.Chinese J. Polym. Sci.,2011,29602-608.DOI:10.1007/s10118-011-1073-3http://doi.org/10.1007/s10118-011-1073-3.
Wu, W.; Qin, Y. S.; Wang, X. H.; Wang, F. F.Bifunctional aluminum porphyrin catalysts for copolymerization of CO2and epoxides.Acta Polymerica Sinica (in Chinese),2014:1017-1022.DOI:10.1002/pola.27247http://doi.org/10.1002/pola.27247.
Zhuo, C. W.; Qin, Y. S.; Wang, X. H.; Wang, F. S.Steric hindrance ligand strategy to aluminum porphyrin catalyst for completely alternative copolymerization of CO2and propylene oxide.Chinese J. Polym. Sci.,2018,36252-260.DOI:10.1007/s10118-018-2093-zhttp://doi.org/10.1007/s10118-018-2093-z.
Zhang, R. Y.; Kuang, Q. X.; Cao, H.; Liu, S. J.; Chen, X. S.; Wang, X. H.; Wang, F. S.Unity makes strength: constructing polymeric catalyst for selective synthesis of CO2/epoxide copolymer.CCS Chem.,2023,5750-760.DOI:10.31635/ccschem.31022.202201952http://doi.org/10.31635/ccschem.31022.202201952.
Coates, G. W.; Moore, D. R.Discrete metal-based catalysts for the copolymerization of CO2and epoxides: discovery, reactivity, optimization, and mechanism.Angew. Chem. Int. Ed.,2004,436618-6639.DOI:10.1002/anie.200460442http://doi.org/10.1002/anie.200460442.
Klaus, S.; Lehenmeier, M. W.; Anderson, C. E.; Rieger, B.Recent advances in CO2/epoxide copolymerization—new strategies and cooperative mechanisms.Coord. Chem. Rev.,2011,2551460-1479.DOI:10.1016/j.ccr.2010.12.002http://doi.org/10.1016/j.ccr.2010.12.002.
Lu, X. B.; Darensbourg, D. J.Cobalt catalysts for the coupling of CO2and epoxides to provide polycarbonates and cyclic carbonates.Chem. Soc. Rev.,2012,411462-1484.DOI:10.1039/C1CS15142Hhttp://doi.org/10.1039/C1CS15142H.
Yang, G. W.; Zhang, Y. Y.; Wu, G. P.Modular organoboron catalysts enable transformations with unprecedented reactivity.Acc. Chem. Res.,2021,544434-4448.DOI:10.1021/acs.accounts.1c00620http://doi.org/10.1021/acs.accounts.1c00620.
Noh, E. K.; Na, S. J.; S, S.; Kim, S. W.; Lee, B. Y.Two components in a molecule: highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization.J. Am. Chem. Soc.,2007,1298082-8083.DOI:10.1021/ja071290nhttp://doi.org/10.1021/ja071290n.
Lv, X. B.Stereoregular CO2copolymers: from amorphous to crystalline materials.Acta Polymerica Sinica (in Chinese),2016:1166-1178.DOI:10.11777/j.issn1000-3304.2016.16151http://doi.org/10.11777/j.issn1000-3304.2016.16151.
Jiang, Y. J.; Ren, W. M.; Liu, Y.; Lu, X. B.Synthesis of polycarbonate block terpolymers using robust cobalt catalyst systems.Chinese J. Polym. Sci.,2019,371200-1204.DOI:10.1007/s10118-019-2270-8http://doi.org/10.1007/s10118-019-2270-8.
You, J. X.; Zhang, M.; Liu, B. H.; Chen, L.; Wu, G. F.; Zhang, S. W.Copolymerization of CO2and cyclohexene oxide using a BDIE·[Zn-Al] catalyst.Acta Polymerica Sinica (in Chinese),2005:750-753.DOI:10.3724/SP.J.1105.2006.00815http://doi.org/10.3724/SP.J.1105.2006.00815.
Chapman, A. M.; Keyworth, C.; Kember, M. R.; Lennox, A. J. J.; Williams, C. K.Adding value to power station captured CO2: tolerant Zn and Mg homogeneous catalysts for polycarbonate polyol production.ACS Catal.,2015,51581-1588.DOI:10.1021/cs501798shttp://doi.org/10.1021/cs501798s.
Deacy, A. C.; Gregory, G. L.; Sulley, G. S.; Chen, T. T. D.; Williams, C. K.Sequence control from mixtures: switchable polymerization catalysis and future materials applications.J. Am. Chem. Soc.,2021,14310021-10040.DOI:10.1021/jacs.1c03250http://doi.org/10.1021/jacs.1c03250.
Ren, W. M.; Yue, T. J.; Li, M. R.; Wan, Z. Q.; Lu, X. B.Crystalline and elastomeric poly(monothiocarbonate)s prepared from copolymerization of COS and achiral epoxide.Macromolecules,2017,5063-68.DOI:10.1021/acs.macromol.6b02089http://doi.org/10.1021/acs.macromol.6b02089.
Kember, M. R.; Williams, C. K.Efficient magnesium catalysts for the copolymerization of epoxides and CO2; using water to synthesize polycarbonate polyols.J. Am. Chem. Soc.,2012,13415676-15679.DOI:10.1021/ja307096mhttp://doi.org/10.1021/ja307096m.
Cui, Q.; Zhang, M.; Xu, S. P.; Liu, B. H.; Chen, L.SalenAl(OPr) catalyst for the copolymerization of CO2and cyclohexene oxide.Acta Polymerica Sinica (in Chinese),2006:541-544.DOI:10.3724/SP.J.1105.2006.00541http://doi.org/10.3724/SP.J.1105.2006.00541.
Luo, J. X.; Cui, Q.; Zhang, M.; Liu, B. H.; Chen, L. B.Studies of the Copolymerization of Carbon Dioxide and Cyclohexene Oxide with Salen Al(OiPr) Catalyst and Effects of Reaction Consitions.Acta Polymerica Sinica (in Chinese),2008:454-459.DOI:10.3724/SP.J.1105.2008.00454http://doi.org/10.3724/SP.J.1105.2008.00454.
Kember, M. R.; Knight, P. D.; Reung, P. T. R.; Williams, C. K.Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure.Angew. Chem. Int. Ed.,2009,48931-933.DOI:10.1002/anie.200803896http://doi.org/10.1002/anie.200803896.
Garden, J. A.; Saini, P. K.; Williams, C. K.Greater than the sum of its parts: a heterodinuclear polymerization catalyst.J. Am. Chem. Soc.,2015,13715078-15081.DOI:10.1021/jacs.5b09913http://doi.org/10.1021/jacs.5b09913.
Li, Y.; Zhang, Y. Y.; Hu, L. F.; Zhang, X. H.; Du, B. Y.; Xu, J. T.Carbon dioxide-based copolymers with various architectures.Prog. Polym. Sci.,2018,82120-157.DOI:10.1016/j.progpolymsci.2018.02.001http://doi.org/10.1016/j.progpolymsci.2018.02.001.
Nagae, H.; Aoki, R.; Akutagawa, S.-n.; Kleemann, J.; Tagawa, R.; Schindler, T.; Choi, G.; Spaniol, T.P.; Tsurugi, H.; Okuda, J.; Lanthanide complexes supported by a trizinc crown ether as catalysts for alternating copolymerization of epoxide and CO2: telomerization controlled by carboxylate anions.Angew. Chem. Int. Ed.,2018,572492-2496.DOI:10.1002/anie.201709218http://doi.org/10.1002/anie.201709218.
Trott, G.; Garden, J. A.; Williams, C. K.Heterodinuclear zinc and magnesium catalysts for epoxide/CO2ring opening copolymerizations.Chem. Sci.,2019,104618-4627.DOI:10.1039/C9SC00385Ahttp://doi.org/10.1039/C9SC00385A.
Deacy, A. C.; Kilpatrick, A. F. R.; Regoutz, A.; Williams, C. K.Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO2and epoxides.Nat. Chem.,2020,12372-380.DOI:10.1038/s41557-020-0450-3http://doi.org/10.1038/s41557-020-0450-3.
Lu, X. B.; Ren, B. H.Partners in epoxide copolymerization catalysis: approach to high activity and selectivity.Chinese J. Polym. Sci.,2022,401331-1348.DOI:10.1007/s10118-022-2744-yhttp://doi.org/10.1007/s10118-022-2744-y.
Wu, G. P.; Jiang, S. D.; Lu, X. B.; Ren, W. M.; Yan, S. K.Stereoregular poly(cyclohexene carbonate)s: unique crystallization behavior.Chinese J. Polym. Sci.,2012,30487-492.DOI:10.1007/s10118-012-1171-xhttp://doi.org/10.1007/s10118-012-1171-x.
Darensbourg, D. J.; Wu, G. P.A one-pot synthesis of a triblock copolymer from propylene oxide/carbon dioxide and lactide: intermediacy of polyol initiators.Angew. Chem. Int. Ed.,2013,5210602-10606.DOI:10.1002/anie.201304778http://doi.org/10.1002/anie.201304778.
Qin, Y. S.; Gu, L.; Wang, X. H.Progress in functional carbon dioxide based aliphatic polycarbonates.Acta Polymerica Sinica (in Chinese),2013:600-608.DOI:10.3724/sp.j.1105.2013.12429http://doi.org/10.3724/sp.j.1105.2013.12429.
Diaz, C.; Mehrkhodavandi, P.Strategies for the synthesis of block copolymers with biodegradable polyester segments.Polym. Chem.,2021,12783-806.DOI:10.1039/D0PY01534Bhttp://doi.org/10.1039/D0PY01534B.
Li, X.; Hu, C. Y.; Duan, R.L.; Liang, Z.; Pang, X.; Deng, M. Efficient ternary catalyst system for the copolymerization of lactide, epoxides and CO2: new insights into the cooperative mechanism.Polym. Chem.,2021,123124-3131.DOI:10.1039/D1PY00281Chttp://doi.org/10.1039/D1PY00281C.
Huang, Y. Z.; Hu, C. Y.; Pang, X.; Zhou, Y. C.; Duan, R. L.; Sun, Z. Q.; Chen, X. S.Electrochemically controlled switchable copolymerization of lactide, carbon dioxide, and epoxides.Angew. Chem. Int. Ed.,2022,61e202202660.
Koning, C.; Wildeson, J.; Parton, R.; Plum, B.; Steeman, P.; Darensbourg, D. J.Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO2and cyclohexene oxide.Polymer,2001,423995-4004.DOI:10.1016/S0032-3861(00)00709-6http://doi.org/10.1016/S0032-3861(00)00709-6.
Cyriac, A.; Lee, S. H.; Varghese, J. K.; Park, J. H.; Jeon, J. Y.; Kim, S. J.; Lee, B. Y.Preparation of flame-retarding poly(propylene carbonate).Green Chem.,2011,133469-3475.DOI:10.1039/c1gc15722ahttp://doi.org/10.1039/c1gc15722a.
Kember, M. R.; Copley, J.; Buchard, A.; Williams, C. K.Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate).Polym. Chem.,2012,31196-1201.DOI:10.1039/c2py00543chttp://doi.org/10.1039/c2py00543c.
Li, X. J.; Wen, Y. F.; Wang, Y.; Peng, H. Y.; Zhou, X. P.; Xie, X. L.CO2-based biodegradable supramolecular polymers with well-tunable adhesive properties.Chinese J. Polym. Sci.,2022,4047-55.DOI:10.1007/s10118-021-2641-9http://doi.org/10.1007/s10118-021-2641-9.
Cohen, C. T.; Chu, T.; Coates, G. W.Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity.J. Am. Chem. Soc.,2005,12710869-10878.DOI:10.1021/ja051744lhttp://doi.org/10.1021/ja051744l.
Darensbourg, D. J.; Fitch, S. B.(Tetramethyltetraazaannulene)chromium chloride: a highly active catalyst for the alternating copolymerization of epoxides and carbon dioxide.Inorg. Chem.,2007,465474-5476.DOI:10.1021/ic7007842http://doi.org/10.1021/ic7007842.
Ren, W. M.; Liu, Z. W.; Wen, Y. Q.; Zhang, R.; Lu, X. B.Mechanistic aspects of the copolymerization of CO2with epoxides using a thermally stable single-site cobalt(III) catalyst.J. Am. Chem. Soc.,2009,13111509-11518.DOI:10.1021/ja9033999http://doi.org/10.1021/ja9033999.
Zhang, X. Y.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M.Fast and selective ring-opening polymerizations by alkoxides and thioureas.Nat. Chem.,2016,81047-1053.DOI:10.1038/nchem.2574http://doi.org/10.1038/nchem.2574.
Lin, B. H.; Waymouth, R. M.Urea anions: simple, fast, and selective catalysts for ring-opening polymerizations.J. Am. Chem. Soc.,2017,1391645-1652.DOI:10.1021/jacs.6b11864http://doi.org/10.1021/jacs.6b11864.
Andrea, K. A.; Kerton, F. M.Triarylborane-catalyzed formation of cyclic organic carbonates and polycarbonates.ACS Catal.,2019,91799-1809.DOI:10.1021/acscatal.8b04282http://doi.org/10.1021/acscatal.8b04282.
Zhang, D. Y.; Boopathi, S. K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. S.Metal-free alternating copolymerization of CO2with epoxides: fulfilling “green” synthesis and activity.J. Am. Chem. Soc.,2016,13811117-11120.DOI:10.1021/jacs.6b06679http://doi.org/10.1021/jacs.6b06679.
Boopathi, S. K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. S.Direct access to poly(glycidyl azide) and its copolymers through anionic (co-)polymerization of glycidyl azide.Nat. Commun.,2019,10293-302.DOI:10.1038/s41467-018-08251-1http://doi.org/10.1038/s41467-018-08251-1.
Jia, M. C.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. S.Monomodal ultrahigh-molar-mass polycarbonate homopolymers and diblock copolymers by anionic copolymerization of epoxides with CO2.ACS Macro Lett.,2019,81594-1598.DOI:10.1021/acsmacrolett.9b00854http://doi.org/10.1021/acsmacrolett.9b00854.
Patil, N. G.; Boopathi, S. K.; Alagi, P.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. S.Carboxylate salts as ideal initiators for the metal-free copolymerization of CO2with epoxides: synthesis of well-defined polycarbonates diols and polyols.Macromolecules,2019,522431-2438.DOI:10.1021/acs.macromol.9b00122http://doi.org/10.1021/acs.macromol.9b00122.
Patil, N.; Bhoopathi, S.; Chidara, V.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. S.Recycling a borate complex for synthesis of polycarbonate polyols: towards an environmentally friendly and cost-effective process.ChemSusChem,2020,135080-5087.DOI:10.1002/cssc.202001395http://doi.org/10.1002/cssc.202001395.
Zhang, C. J.; Wu, S. Q.; Boopathi, S.; Zhang, X. H.; Hong, X.; Gnanou, Y.; Feng, X. S.Versatility of boron-mediated coupling reaction of oxetanes and epoxides with CO2: selective synthesis of cyclic carbonates or linear polycarbonates.ACS Sustain. Chem. Eng.,2020,813056-13063.DOI:10.1021/acssuschemeng.0c04768http://doi.org/10.1021/acssuschemeng.0c04768.
Wang, Y.; Zhang, J. Y.; Yang, J. L.; Zhang, H. K.; Kiriratnikom, J.; Zhang, C. J.; Chen, K. L.; Cao, X. H.; Hu, L. F.; Zhang, X. H.Highly selective and productive synthesis of a carbon dioxide-based copolymer upon zwitterionic growth.Macromolecules,2021,542178-2186.DOI:10.1021/acs.macromol.0c02377http://doi.org/10.1021/acs.macromol.0c02377.
Yang, G. W.; Zhang, Y. Y.; Xie, R.; Wu, G. P.Scalable bifunctional organoboron catalysts for copolymerization of CO2and epoxides with unprecedented efficiency.J. Am. Chem. Soc.,2020,14212245-12255.DOI:10.1021/jacs.0c03651http://doi.org/10.1021/jacs.0c03651.
Yang, G. W.; Xu, C. K.; Xie, R.; Zhang, Y. Y.; Zhu, X. F.; Wu, G. P.Pinwheel-shaped tetranuclear organoboron catalysts for perfectly alternating copolymerization of CO2and epichlorohydrin.J. Am. Chem. Soc.,2021,1433455-3465.DOI:10.1021/jacs.0c12425http://doi.org/10.1021/jacs.0c12425.
Zhang, J. B.; Wang, L. B.; Liu, S. F.; Li, Z. B.Synthesis of diverse polycarbonates by organocatalytic copolymerization of CO2and epoxides: from high pressure and temperature to ambient conditions.Angew. Chem. Int. Ed.,2022,61e202111197DOI:10.1002/ange.202111197http://doi.org/10.1002/ange.202111197.
Wang, X. W.; Hui, J. W.; Shi, M. M.; Kou, X. H.; Li, X. X.; Zhong, R. L.; Li, Z. B.Exploration of the synergistic effect in a one-component lewis pair system: serving as a dual initiator and catalyst in the ring-opening polymerization of epoxides.ACS Catal.,2022,128434-8443.DOI:10.1021/acscatal.2c02170http://doi.org/10.1021/acscatal.2c02170.
Hui, J. W.; Wang, X. W.; Yao, X. Q.; Li, Z. B.A one-component phosphonium borane Lewis pair serves as a dual initiator and catalyst in the ring-opening alternating copolymerization of anhydrides and epoxides.Polym. Chem.,2022,136551-6563.DOI:10.1039/D2PY01001Ahttp://doi.org/10.1039/D2PY01001A.
Xiao, Y. L.; Wang, Z.; Ding, K. L.Copolymerization of cyclohexene oxide with CO2by using intramolecular dinuclear zinc catalysts.Chem. Eur. J.,2005,113668-3678.DOI:10.1002/chem.200401159http://doi.org/10.1002/chem.200401159.
Nakano, K.; Nakamura, M.; Nozaki, K.Alternating copolymerization of cyclohexene oxide with carbon dioxide catalyzed by (salalen)CrCl complexes.Macromolecules,2009,426972-6980.DOI:10.1021/ma9012626http://doi.org/10.1021/ma9012626.
Cambie, R. C.; Lindsay, B. G.; Rutledge, P. S.; Woodgate, P. D.Oxidative displacement of iodine from vicinal iodocarboxylates and alkyl iodides.J. Chem. Soc., Chem. Commun.,1978:919-919.DOI:10.1002/chin.197910158http://doi.org/10.1002/chin.197910158.
0
浏览量
14
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构