a.School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
b.Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
daiyu@ustc.edu.cn
Scan for full text
Synthesis of High Molecular Weight Polyethylene and E-MA Copolymers Using Iminopyridine Ni(II) and Pd(II) Complexes Containing a Flexible Backbone and Rigid Axial Substituents[J]. 高分子科学(英文版), 2023,41(2):233-239.
Yu-Dan Liao, Qi Cai, Sheng-Yu Dai. Synthesis of High Molecular Weight Polyethylene and E-MA Copolymers Using Iminopyridine Ni(II) and Pd(II) Complexes Containing a Flexible Backbone and Rigid Axial Substituents[J]. Chinese Journal of Polymer Science, 2023,41(2):233-239.
Synthesis of High Molecular Weight Polyethylene and E-MA Copolymers Using Iminopyridine Ni(II) and Pd(II) Complexes Containing a Flexible Backbone and Rigid Axial Substituents[J]. 高分子科学(英文版), 2023,41(2):233-239. DOI: 10.1007/s10118-022-2847-5.
Yu-Dan Liao, Qi Cai, Sheng-Yu Dai. Synthesis of High Molecular Weight Polyethylene and E-MA Copolymers Using Iminopyridine Ni(II) and Pd(II) Complexes Containing a Flexible Backbone and Rigid Axial Substituents[J]. Chinese Journal of Polymer Science, 2023,41(2):233-239. DOI: 10.1007/s10118-022-2847-5.
Compared with the dibenzhydryl Ni(II) and Pd(II) catalysts, the catalysts using "sandwich" and rotation-restricted strategies exhibited an outstanding ability to suppress the chain transfer reactions and generated polymers and copolymers with 1-2 orders of magnitude higher molecular weights
Suppressing the chain transfer reactions during polymerization in late-transition metal-catalyzed olefin polymerization systems is the key to obtaining high molecular weight polyolefin materials. In this work, two efficient strategies (“sandwich” and rotation-restricted strategies) to retard chain transfer reactions in ethylene (co)polymerization were employed for the iminopyridyl system. Herein, a family of iminopyridyl Ni(II) and Pd(II) complexes with a flexible backbone and rigid axial bulky aryl substituents were designed, synthesized and characterized. In ethylene polymerization, the iminopyridyl Ni(II) and Pd(II) catalysts using the two strategies exhibited reasonable activities and generated highly branched polyethylenes with high molecular weights, where catalysts with dibenzosuberyl substituents exhibited significantly higher activities and produced higher molecular weight polyethylene than catalysts with 8-arylnaphthalenyl substituent. A similar trend of activities and molecular weights was also found in the copolymerization of ethylene with MA using the Pd(II) catalysts. Moreover, highly branched E-MA copolymers with moderate to high molecular weights and high incorporation ratios (up to 17.4 mol%) were generated with the two Pd(II) catalysts. Most interestingly, as compared with the dibenzhydryl Ni(II) and Pd(II) catalysts, the catalysts using the two strategies exhibited a superior ability to retard the chain transfer reactions and generated polymers and copolymers with 1−2 orders of magnitude higher molecular weights during ethylene (co)polymerization.
Ni(II) and Pd(II)Suppressing chain transferHigh molecular weightEthylene (co)polymerization
Ittel, S. D.; Johnson, L. K.; Brookhart, M . Late-metal catalysts for ethylene homo-and copolymerization . Chem. Rev. , 2000 . 100 1169 -1204 . DOI:10.1021/cr9804644http://doi.org/10.1021/cr9804644 .
Guo, L.; Dai, S.; Sui, X.; Chen, C . Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization . ACS Catal. , 2016 . 6 428 -441 . DOI:10.1021/acscatal.5b02426http://doi.org/10.1021/acscatal.5b02426 .
Dai, S.; Zhou, S.; Zhang, W.; Chen, C . Systematic investigations of ligand steric effects on α-diimine palladium catalyzed olefin polymerization and copolymerization . Macromolecules , 2016 . 49 8855 -8862 . DOI:10.1021/acs.macromol.6b02104http://doi.org/10.1021/acs.macromol.6b02104 .
Gong, Y.; Li, S.; Gong, Q.; Zhang, S.; Liu, B.; Dai, S . Systematic investigations of ligand steric effects on α-diimine nickel catalyzed olefin polymerization and copolymerization . Organometallics , 2019 . 38 2919 -2926 . DOI:10.1021/acs.organomet.9b00267http://doi.org/10.1021/acs.organomet.9b00267 .
Bianchini, C.; Giambastiani, G.; Luconi, L.; Meli, A . Olefin oligomerization, homopolymerization and copolymerization by late transition metals supported by (imino)pyridine ligands . Coord. Chem. Rev. , 2010 . 254 431 -455 . DOI:10.1016/j.ccr.2009.07.013http://doi.org/10.1016/j.ccr.2009.07.013 .
Laine, T. V.; Lappalainen, K.; Liimatta, J.; Aitola, E.; Löfgren, B.; Leskelä, M . Polymerization of ethylene with new diimine complexes of late transition metals . Macromol. Rapid Commun. , 1999 . 20 487 -491 . DOI:10.1002/(SICI)1521-3927(19990901)20:9<487::AID-MARC487>3.0.CO;2-Ghttp://doi.org/10.1002/(SICI)1521-3927(19990901)20:9<487::AID-MARC487>3.0.CO;2-G .
Laine, T. V.; Piironen, U.; Lappalainen, K.; Klinga, M.; Aitola, E.; Leskelä, M . Pyridinylimine-based nickel(II) and palladium(II) complexes: preparation, structural characterization and use as alkene polymerization catalysts . J. Org. Chem. , 2000 . 606 112 -124 . DOI:10.1016/S0022-328X(00)00291-6http://doi.org/10.1016/S0022-328X(00)00291-6 .
Meneghetti, S. P.; Lutz, P. J.; Kress, J . Oligomerization of olefins catalyzed by new cationic palladium(II) complexes containing an unsymmetrical α-diimine ligand . Organometallics , 1999 . 18 2734 -2737 . DOI:10.1021/om990165khttp://doi.org/10.1021/om990165k .
Huang, C.; Zhang, Y.; Liang, T.; Zhao, Z.; Hu, X.; Sun, W . Rigid geometry 8-arylimino-7, 7-dimethyl-5, 6-dihydroquinolyl nickel bromides: single-site active species towards ethylene polymerization . New J. Chem. , 2016 . 40 9329 -9336 . DOI:10.1039/C6NJ02464Ehttp://doi.org/10.1039/C6NJ02464E .
Huang, F.; Sun, Z.; Du, S.; Yue, E.; Ba, J.; Hu, X.; Liang, T.; Galland, G. B.; Sun, W . Ring-tension adjusted ethylene polymerization by aryliminocycloheptapyridyl nickel complexes . Dalton Trans. , 2015 . 44 14281 -14292 . DOI:10.1039/c5dt01831ehttp://doi.org/10.1039/c5dt01831e .
Yue, E.; Xing, Q.; Zhang, L.; Shi, Q.; Cao, X.; Wang, L.; Redshaw, C.; Sun, W . Synthesis and characterization of 2-(2-benzhydrylnaphthyliminomethyl) pyridylnickel halides: formation of branched polyethylene . Dalton Trans. , 2014 . 43 3339 -3346 . DOI:10.1039/c3dt53205dhttp://doi.org/10.1039/c3dt53205d .
Guo, L.; Li, S.; Ji, M.; Sun, W.; Liu, W.; Li, G.; Zhang, J.; Liu, Z.; Dai, S . Monoligated vs bisligated effect in iminopyridyl nickel catalyzed ethylene polymerization . Organometallics , 2019 . 38 2800 -2806 . DOI:10.1021/acs.organomet.9b00325http://doi.org/10.1021/acs.organomet.9b00325 .
Chen, X.; Gao, J.; Liao, H.; Gao, H.; Wu, Q . Synthesis, characterization, and catalytic ethylene oligomerization of pyridine-imine palladium complexes . Chinese J. Polym. Sci. , 2018 . 36 176 -184 . DOI:10.1007/s10118-018-2052-8http://doi.org/10.1007/s10118-018-2052-8 .
Li, S.; Lu, Z.; Fan, W.; Dai, S . Efficient incorporation of a polar comonomer for direct synthesis of hyperbranched polar functional ethylene oligomers . New J. Chem. , 2021 . 45 4024 -4031 . DOI:10.1039/D0NJ05857Bhttp://doi.org/10.1039/D0NJ05857B .
Yan, Z.; Li, S.; Dai, S . Synthesis and characterization of hyperbranched polar functionalized olefin oligomers . Chinese J. Synth. Chem. , 2021 . 29 1033 -1044. .
Chen, Z.; Allen, K. E.; White, P. S.; Daugulis, O.; Brookhart, M . Synthesis of branched polyethylene with “half-sandwich” pyridine-imine nickel complexes . Organometallics , 2016 . 35 1756 -1760 . DOI:10.1021/acs.organomet.6b00165http://doi.org/10.1021/acs.organomet.6b00165 .
Dai, S.; Sui, X.; Chen, C . Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts . Chem. Commun. , 2016 . 52 9113 -9116 . DOI:10.1039/C6CC00457Ahttp://doi.org/10.1039/C6CC00457A .
Li, S.; Dai, S . Highly efficient incorporation of polar comonomers in copolymerizations with ethylene using iminopyridyl palladium system . J. Catal. , 2021 . 393 51 -59 . DOI:10.1016/j.jcat.2020.11.015http://doi.org/10.1016/j.jcat.2020.11.015 .
Ge, Y.; Cai, Q.; Wang, Y.; Gao, J.; Chi, Y.; Dai, S . Synthesis of high-molecular-weight branched polyethylene using a hybrid “sandwich” pyridine-imine Ni(II) catalyst . Front. Chem. , 2022 . 10 886888 DOI:10.3389/fchem.2022.886888http://doi.org/10.3389/fchem.2022.886888 .
Li, S.; Dai, S . Effect of aryl orientation on olefin polymerization in iminopyridyl catalytic system . Polymer , 2020 . 200 122607 DOI:10.1016/j.polymer.2020.122607http://doi.org/10.1016/j.polymer.2020.122607 .
Zhang, D.; Nadres, E. T.; Brookhart, M.; Daugulis, O . Synthesis of highly branched polyethylene using “sandwich” (8-p-tolyl naphthyl α-diimine) nickel (II) catalysts . Organometallics , 2013 . 32 5136 -5143 . DOI:10.1021/om400704hhttp://doi.org/10.1021/om400704h .
Li, S.; Dai, S . 8-Arylnaphthyl substituent retarding chain transfer in insertion polymerization with unsymmetrical α-diimine systems . Polym. Chem. , 2020 . 11 7199 -7206 . DOI:10.1039/D0PY01231Ahttp://doi.org/10.1039/D0PY01231A .
Chen, Z.; Mesgar, M.; White, P. S.; Daugulis, O.; Brookhart, M . Synthesis of branched ultrahigh-molecular-weight polyethylene using highly active neutral, single-component Ni(II) catalysts . ACS Catal. , 2015 . 5 631 -636 . DOI:10.1021/cs501948dhttp://doi.org/10.1021/cs501948d .
Tran, Q.; Brookhart, M.; Daugulis, O . New neutral nickel and palladium sandwich catalysts: synthesis of ultra-high molecular weight polyethylene (UHMWPE) via highly controlled polymerization and mechanistic studies of chain propagation . J. Am. Chem. Soc. , 2020 . 142 7198 -7206 . DOI:10.1021/jacs.0c02045http://doi.org/10.1021/jacs.0c02045 .
Kenyon, P.; Wörner, M.; Mecking, S . Controlled polymerization in polar solvents to ultrahigh molecular weight polyethylene . J. Am. Chem. Soc. , 2018 . 140 6685 -6689 . DOI:10.1021/jacs.8b03223http://doi.org/10.1021/jacs.8b03223 .
Peng, H.; Li, S.; Li, G.; Dai, S.; Ji, M.; Liu, Z.; Guo, L . Rotation-restricted strategy to synthesize high molecular weight polyethylene using iminopyridyl nickel and palladium catalyst . Appl. Organomet. Chem. , 2021 . 35 e6140 DOI:10.1002/aoc.6140http://doi.org/10.1002/aoc.6140 .
Ge, Y.; Li, S.; Wang, H.; Dai, S . Synthesis of branched polyethylene and ethylene-MA copolymers using unsymmetrical iminopyridyl nickel and palladium complexes . Organometallics , 2021 . 40 3033 -3041 . DOI:10.1021/acs.organomet.1c00388http://doi.org/10.1021/acs.organomet.1c00388 .
Dai, S.; Li, G.; Lu, W.; Liao, Y.; Fan, W . Suppression of chain transfer via restricted rotation effect of dibenzosuberyl substituents in polymerization catalysis . Polym. Chem. , 2021 . 12 3240 -3249 . DOI:10.1039/D1PY00333Jhttp://doi.org/10.1039/D1PY00333J .
Lu, Z.; Liao, Y.; Fan, W.; Dai, S. . Efficient suppression of chain transfer reaction in ethylene coordination polymerization with dibenzosuberyl substituents . Polym. Chem. , 2022 . 13 4090 -4099 . DOI:10.1039/d2py00282ehttp://doi.org/10.1039/d2py00282e .
Wang, C.; Kang, X.; Dai, S.; Cui, F.; Li, Y.; Mu, H.; Mecking, S.; Jian, Z . Efficient suppression of chain transfer and branching via Cs-type shielding in a neutral Ni(II) catalyst . Angew. Chem. Int. Ed. , 2021 . 60 4018 -4022 . DOI:10.1002/ange.202013069http://doi.org/10.1002/ange.202013069 .
Meinhard, D.; Wegner, M.; Kipiani, G.; Hearley, A.; Reuter, P.; Fischer, S.; Marti, O.; Rieger, B . New nickel(II) diimine complexes and the control of polyethylene microstructure by catalyst design . J. Am. Chem. Soc. , 2007 . 129 9182 -9191 . DOI:10.1021/ja070224ihttp://doi.org/10.1021/ja070224i .
Xia, J.; Zhang, Y.; Kou, S.; Jian, Z . A concerted double-layer steric strategy enables an ultra-highly active nickel catalyst to access ultrahigh molecular weight polyethylenes . J. Catal. , 2020 . 390 30 -36 . DOI:10.1016/j.jcat.2020.07.017http://doi.org/10.1016/j.jcat.2020.07.017 .
Hu, X.; Kang, X.; Zhang, Y.; Jian, Z . Facile access to polar-functionalized ultrahigh molecular weight polyethylene at ambient conditions . CCS Chem. , 2021 . 3 1598 -1612 . DOI:10.31635/ccschem.021.202100895http://doi.org/10.31635/ccschem.021.202100895 .
Fan, H.; Xu, G.; Wang, H.; Dai, S . Direct synthesis of hyperbranched ethylene oligomers and ethylene/methyl acrylate co-oligomers using iminopyridyl systems with weak neighboring group interactions . J. Polym. Sci. , 2022 . 60 1944 -1953 . DOI:10.1002/pol.20220047http://doi.org/10.1002/pol.20220047 .
Yan, Z.; Bi, H.; Ding, B.; Wang, H.; Xu, G.; Dai, S . A rigid-flexible double-layer steric strategy for ethylene (co)oligomerization with pyridine-imine Ni(II) and Pd(II) complexes . New J. Chem. , 2022 . 46 8669 -8678 . DOI:10.1039/D2NJ00183Ghttp://doi.org/10.1039/D2NJ00183G .
Fan, H.; Chang, G.; Bi, H.; Gui, X.; Wang, H.; Xu, G.; Dai, S . Facile synthesis of hyperbranched ethylene oligomers and ethylene-methyl acrylate co-oligomers with different microscopic chain architectures . ACS Polymers Au , 2022 . 2 88 -96 . DOI:10.1021/acspolymersau.1c00039http://doi.org/10.1021/acspolymersau.1c00039 .
Yue, E.; Zeng, Y.; Zhang, W.; Huang, F.; Cao, X.; Liang, T.; Sun, W . Tailoring polyethylenes through constraining geometry of nickel complex: synthesis, characterization and ethylene polymerization of 8-(2-benzhydrylnaphthylimino)-5,6,7-trihydroquinolylnickel halides . Inorgan. Chim. Acta. , 2016 . 442 178 -186 . DOI:10.1016/j.ica.2015.12.008http://doi.org/10.1016/j.ica.2015.12.008 .
Guo, L.; Zhu, D.; Zhang, W.; Zada, M.; Solan, G, A.; Hao, X.; Sun, W . Remote dibenzocycloheptyl-substitution of an iminotrihydroquinoline-nickel catalyst as a route to narrowly dispersed branched polyethylene waxes with alkene functionality . Eur. Polym. J. , 2018 . 107 315 -328 . DOI:10.1016/j.eurpolymj.2018.09.007http://doi.org/10.1016/j.eurpolymj.2018.09.007 .
Sun, Z.; Yue, E.; Qu, M.; Oleynik, I, V.; Oleynik, I, I.; Li, K.; Liang, T.; Zhang, W.; Sun, W . 8-(2-Cycloalkylphenylimino)-5,6,7-trihydro-quinolylnickel halides: polymerizing ethylene to highly branched and lower molecular weight polyethylenes . Inorg. Chem. Front. , 2015 . 2 223 -227 . DOI:10.1039/C4QI00162Ahttp://doi.org/10.1039/C4QI00162A .
Jiang, S.; Zheng, Y.; Liu, M.; Yu, Z.; Ma, Y.; Solan, G, A.; Zhang, W.; Liang, T.; Sun, W. . Polyethylene waxes with short chain branching via steric and electronic tuning of an 8-(arylimino)-5,6,7-trihydroquinoline-nickel catalyst . Organometallics , 2022 . DOI: 10.1021/acs.organomet.2c00100 DOI:10.1021/acs.organomet.2c00100http://doi.org/10.1021/acs.organomet.2c00100 .
Dai, S.; Sui, X.; Chen, C . Highly robust palladium(II) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate . Angew. Chem. Int. Ed. , 2015 . 127 10086 -10091 . DOI:10.1002/ange.201503708http://doi.org/10.1002/ange.201503708 .
Zhao, Y.; Li, S.; Fan, W.; Dai, S . Reversion of the chain walking ability of α-diimine nickel and palladium catalysts with bulky diarylmethyl substituents . J. Organomet. Chem. , 2021 . 932 121649 DOI:10.1016/j.jorganchem.2020.121649http://doi.org/10.1016/j.jorganchem.2020.121649 .
Gong, Y.; Li, S.; Tan, C.; Kong, W.; Xu, G.; Zhang, S.; Liu, B.; Dai, S . π-π Interaction effect in insertion polymerization with α-diimine palladium systems . J. Cat. , 2019 . 378 184 -191 . DOI:10.1016/j.jcat.2019.08.034http://doi.org/10.1016/j.jcat.2019.08.034 .
Guo, J.; Zhang, W.; Mahmood, Q.; Zhang, R.; Sun, Y.; Sun, W . Vinyl/vinylene functionalized highly branched polyethylene waxes obtained using electronically controlled cyclohexyl-fused pyridinylimine-nickel precatalysts . J. Polym. Sci., Part A: Polym. Chem. , 2018 . 56 1269 -1281 . DOI:10.1002/pola.29008http://doi.org/10.1002/pola.29008 .
Hai, Z.; Lu, Z.; Li, S.; Cao, Z.; Dai, S . Synergistic effect of rigid and flexible substituents in insertion polymerization with a-diimine nickel and palladium catalysts . Polym. Chem. , 2021 . 12 4643 -4653 . DOI:10.1039/D1PY00812Ahttp://doi.org/10.1039/D1PY00812A .
Allen, K. E.; Campos, J.; Daugulis, O.; Brookhart, M . Living polymerization of ethylene and copolymerization of ethylene/methyl acrylate using “sandwich” diimine palladium catalysts . ACS Catal. , 2015 . 5 456 -464 . DOI:10.1021/cs5016029http://doi.org/10.1021/cs5016029 .
Zhang, Y.; Wang, C.; Mecking, S.; Jian, Z . Ultrahigh branching of main-chain-functionalized polyethylenes by inverted insertion selectivity . Angew. Chem. Int. Ed. , 2020 . 59 14296 -14302 . DOI:10.1002/anie.202004763http://doi.org/10.1002/anie.202004763 .
Ge, Y.; Li, S.; Fan, W.; Dai, S . Flexible “sandwich” (8 alkylnaphthyl α diimine) catalysts in insertion polymerization . Inorg. Chem. , 2021 . 60 5673 -5681 . DOI:10.1021/acs.inorgchem.0c03715http://doi.org/10.1021/acs.inorgchem.0c03715 .
Zhong, S.; Tan, Y.; Zhong, L.; Gao, J.; Liao, H.; Jiang, L.; Gao, H.; Wu, Q . Precision synthesis of ethylene and polar monomer copolymers by palladium-catalyzed living coordination copolymerization . Macromolecules , 2017 . 50 5661 -5669 . DOI:10.1021/acs.macromol.7b01132http://doi.org/10.1021/acs.macromol.7b01132 .
Liao, Y.; Zhang, Y.; Cui, L.; Mu, H.; Jian, Z . Pentiptycenyl substituents in insertion polymerization with α-diimine nickel and palladium species . Organometallics , 2019 . 38 2075 -2083 . DOI:10.1021/acs.organomet.9b00106http://doi.org/10.1021/acs.organomet.9b00106 .
Li, S.; Xu, G.; Dai, S . A remote nonconjugated electron effect in insertion polymerization with α-diimine nickel and palladium species . Polym. Chem. , 2020 . 11 2692 -2699 . DOI:10.1039/D0PY00218Fhttp://doi.org/10.1039/D0PY00218F .
Lu, Z.; Chang, G.; Jing, K.; Dai, S . A dual steric enhancement strategy in α-diimine nickel and palladium catalysts for ethylene polymerization and copolymerization . Organometallics , 2022 . 41 124 -132 . DOI:10.1021/acs.organomet.1c00568http://doi.org/10.1021/acs.organomet.1c00568 .
Guo, L.; Sun, W.; Li, S.; Xu, G.; Dai, S . Bulky yet flexible substituents in insertion polymerization with α-diimine nickel and palladium systems . Polym. Chem. , 2019 . 10 4866 -4871 . DOI:10.1039/C9PY00857Hhttp://doi.org/10.1039/C9PY00857H .
Dai, S.; Li, S.; Xu, G.; Liao, Y.; Guo, L . Flexible cycloalkyl substituents in insertion polymerization with α-diimine nickel and palladium species . Polym. Chem. , 2020 . 11 1393 -1400 . DOI:10.1039/C9PY01901Dhttp://doi.org/10.1039/C9PY01901D .
0
浏览量
11
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构