a.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
b.R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
c.R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
jdding1@fudan.edu.cn
Scan for full text
A Biosurfactant-containing TSD Strategy to Modify Bovine Pericardial Bioprosthetic Valves for Anticalcification[J]. 高分子科学(英文版), 2023,41(1):51-66.
Cai-Yun Gao, Gang Wang, Lin Wang, et al. A Biosurfactant-containing TSD Strategy to Modify Bovine Pericardial Bioprosthetic Valves for Anticalcification[J]. Chinese Journal of Polymer Science, 2023,41(1):51-66.
A Biosurfactant-containing TSD Strategy to Modify Bovine Pericardial Bioprosthetic Valves for Anticalcification[J]. 高分子科学(英文版), 2023,41(1):51-66. DOI: 10.1007/s10118-022-2843-9.
Cai-Yun Gao, Gang Wang, Lin Wang, et al. A Biosurfactant-containing TSD Strategy to Modify Bovine Pericardial Bioprosthetic Valves for Anticalcification[J]. Chinese Journal of Polymer Science, 2023,41(1):51-66. DOI: 10.1007/s10118-022-2843-9.
The pseudo-color SEM image shows a calcified bovine pericardial valve with collagen fibrils in blue and calcium nodules in yellow. The calcification shortens the life of the bioprosthetic valve. A two-step decellularization (TSD) strategy was put forward for anticalcification. The ,in vivo, biomineralization extent was reduced two orders of magnitude.
Bioprosthetic heart valves (BHVs) are important for transcatheter valve replacement. Current commercial BHVs on the market are basically porcine or bovine pericardium (BP) crosslinked with glutaraldehyde (GA). Simply applying GA to BHVs can enhance mechanical stability, but cannot alleviate ,in vivo, calcification. In this work, we developed a two-step decellularization (TSD) strategy to modify this biomacromolecular network, in which BP was post-treated, as the second step of decellularization, with a mild biosurfactant ,n,-dodecyl-,β,-D-maltoside in a mixture of isopropanol and phosphate-buffered saline after the first step of traditional decellularization and GA cross-linking. The TSD-treated BP exhibited not only low cytotoxicity and excellent mechanical properties ,in vitro, but also low immune responses and significant anticalcification ,in vivo,. After 60 days of subcutaneous implantation in the back of Wistar rats, the calcium content was, as quantified with an inductively coupled plasma optical emission spectrometer, only 1.1 μg/mg compared to 138.6 μg/mg in the control group without the post-treatment. In addition, collagen fibrils were observed with field emitting scanning electron microscopy (SEM), and the morphology and composition of the calcified sites resulting from ,in vivo, biomineralization were studied with SEM with energy dispersive spectroscopy and also X-ray diffraction. This study proposes a facile yet effective anticalcification strategy for the modification of the bovine pericardial bioprosthetic heart valve, a natural biomacromolecular network.
Heart valveAnticalcificationCollagenIn vivo biomineralization Transcatheter aortic valve implantation (TAVI)Extracellular matrixBiomacromolecular networkBiosurfactantBovine pericardium
Arsalan, M.; Walther, T . Durability of prostheses for transcatheter aortic valve implantation . Nat. Rev. Cardiol. , 2016 . 13 360 -367 . DOI:10.1038/nrcardio.2016.43http://doi.org/10.1038/nrcardio.2016.43 .
Saleeb, S. F.; Gauvreau, K.; Mayer, J. E.; Newburger, J. W . Aortic valve replacement with bovine pericardial tissue valve in children and young adults . Circulation , 2019 . 139 983 -985 . DOI:10.1161/CIRCULATIONAHA.118.037187http://doi.org/10.1161/CIRCULATIONAHA.118.037187 .
Kuang, D.; Lei, Y.; Yang, L.; Wang, Y . Preclinical study of a self-expanding pulmonary valve for the treatment of pulmonary valve disease . Regen. Biomater. , 2020 . 7 609 -618 . DOI:10.1093/rb/rbaa035http://doi.org/10.1093/rb/rbaa035 .
Li, N.; Peng, J.; Tan, M.; Bai, Y.; Qiao, F.; Han, Q.; Lu, F.; Li, B.; Han, L.; Xu, Z.; Zhang, G . Clinical outcome of reoperation for mechanical prosthesis at aortic position . Heart Lung Circ. , 2021 . 30 1084 -1090 . DOI:10.1016/j.hlc.2021.01.002http://doi.org/10.1016/j.hlc.2021.01.002 .
Yacoub, M. H . Establishing pediatric cardiovascular services in the developing world: a wake-up call . Circulation , 2007 . 116 1876 -1878 . DOI:10.1161/CIRCULATIONAHA.107.726265http://doi.org/10.1161/CIRCULATIONAHA.107.726265 .
Zilla, P.; Brink, J.; Human, P.; Bezuidenhout, D . Prosthetic heart valves: catering for the few . Biomaterials , 2008 . 29 385 -406 . DOI:10.1016/j.biomaterials.2007.09.033http://doi.org/10.1016/j.biomaterials.2007.09.033 .
Puri, R.; Chamandi, C.; Rodriguez-Gabella, T.; Rodes-Cabau, J . Future of transcatheter aortic valve implantation-evolving clinical indications . Nat. Rev. Cardiol. , 2018 . 15 57 -65 . DOI:10.1038/nrcardio.2017.116http://doi.org/10.1038/nrcardio.2017.116 .
Ma, B.; Wang, X.; Wu, C.; Chang, J . Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds . Regen. Biomater. , 2014 . 1 81 -89 . DOI:10.1093/rb/rbu009http://doi.org/10.1093/rb/rbu009 .
Fioretta, E. S.; Motta, S. E.; Lintas, V.; Loerakker, S.; Parker, K. K.; Baaijens, F. P. T.; Falk, V.; Hoerstrup, S. P.; Emmert, M. Y . Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity . Nat. Rev. Cardiol. , 2021 . 18 92 -116 . DOI:10.1038/s41569-020-0422-8http://doi.org/10.1038/s41569-020-0422-8 .
Rémi, E.; Khelil, N.; Di Centa, I.; Roques, C.; Ba, M.; Medjahed-Hamidi, F.; Chaubet, F.; Letourneur, D.; Lansac, E.; Meddahi-Pelle, A. . Pericardial processing: challenges, outcomes and future prospects . Biomater. Sci. Eng. , 2011 . 22 438 -456 . DOI:10.5772/24949http://doi.org/10.5772/24949 .
Liu, C.; Qiao, W.; Cao, H.; Dai, J.; Li, F.; Shi, J.; Dong, N . A riboflavin-ultraviolet light A-crosslinked decellularized heart valve for improved biomechanical properties, stability, and biocompatibility . Biomater. Sci. , 2020 . 8 2549 -2563 . DOI:10.1039/c9bm01956ahttp://doi.org/10.1039/c9bm01956a .
Fiddler, G. I.; Gerlis, L. M.; Walker, D. R.; Scott, O.; Williams, G. J . Calcification of glutaraldehyde-preserved porcine and bovine xenograft valv& in young children . Ann. Thorac. Surg. , 1983 . 35 257 -261 . DOI:10.1016/S0003-4975(10)61554-8http://doi.org/10.1016/S0003-4975(10)61554-8 .
Schinke, T.; McKee, M.; Karsenty, G . Extracellular matrix calcification: where is the action? . Nat. Genet. , 1999 . 21 150 -151 . DOI:10.1038/5928http://doi.org/10.1038/5928 .
Kim, K. M . Cells, rather than extracellular matrix, nucleate apatite in glutaraldehyde-treated vascular tissue . J. Biomed. Mater. Res. , 2002 . 59 639 -645 . DOI:10.1002/jbm.10038http://doi.org/10.1002/jbm.10038 .
Schoen, F. J.; Levy, R. J . Calcification of tissue heart valve substitutes: progress toward understanding and prevention . Ann. Thorac. Surg. , 2005 . 79 1072 -1080 . DOI:10.1016/j.athoracsur.2004.06.033http://doi.org/10.1016/j.athoracsur.2004.06.033 .
D'Alessandro, C. C.; Komninou, M. A.; Badria, A . F.; Korossis, S.; Koutsoukos, P.; Mavrilas, D. Calcification assessment of bioprosthetic heart valve tissues using an improved in vitro model . IEEE Trans. Biomed. Eng. , 2020 . 67 2453 -2461 . DOI:10.1109/TBME.2019.2963043http://doi.org/10.1109/TBME.2019.2963043 .
Liu, J.; Li, B.; Jing, H.; Qin, Y.; Wu, Y.; Kong, D.; Leng, X.; Wang, Z . Curcumin-crosslinked acellular bovine pericardium for the application of calcification inhibition heart valves . Biomed. Mater. , 2020 . 15 045002 DOI:10.1088/1748-605X/ab6f46http://doi.org/10.1088/1748-605X/ab6f46 .
Wang, X.; Zhai, W.; Wu, C.; Ma, B.; Zhang, J.; Zhang, H.; Zhu, Z.; Chang, J . Procyanidins-crosslinked aortic elastin scaffolds with distinctive anti-calcification and biological properties . Acta Biomater. , 2015 . 16 81 -93 . DOI:10.1016/j.actbio.2015.01.028http://doi.org/10.1016/j.actbio.2015.01.028 .
Yang, L.; Xie, S.; Ding, K.; Lei, Y.; Wang, Y . The study of dry biological valve crosslinked with a combination of carbodiimide and polyphenol . Regen. Biomater. , 2021 . 8 rbaa049 DOI:10.1093/rb/rbaa049http://doi.org/10.1093/rb/rbaa049 .
Liang, H. C.; Chang, Y.; Hsu, C. K.; Lee, M. H.; Sung, H. W . Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern . Biomaterials , 2004 . 25 3541 -3552 . DOI:10.1016/j.biomaterials.2003.09.109http://doi.org/10.1016/j.biomaterials.2003.09.109 .
Hu, Y.; Su, X.; Lei, Y.; Wang, Y . A novel anti-calcification method for bioprosthetic heart valves using dopamine-modified alginate . Polym. Bull. , 2018 . 76 1423 -1434 . DOI:10.1007/s00289-018-2450-7http://doi.org/10.1007/s00289-018-2450-7 .
Nogueira, G. M.; Rodas, A. C. D.; Weska, R. F.; Aimoli, C. G.; Higa, O. Z.; Maizato, M.; Leiner, A. A.; Pitombo, R. N. M.; Polakiewicz, B.; Beppu, M. M . Bovine pericardium coated with biopolymeric films as an alternative to prevent calcification: in vitro calcification and cytotoxicity results . Mater. Sci. Eng. C , 2010 . 30 575 -582 . DOI:10.1016/j.msec.2010.02.011http://doi.org/10.1016/j.msec.2010.02.011 .
Ohri, R.; Hahn, S. K.; Hoffman, A. S.; Stayton, P. S.; Giachelli, C. M . Hyaluronic acid grafting mitigates calcification of glutaraldehyde-fixed bovine pericardium . J. Biomed. Mater. Res. A , 2004 . 70 328 -334 . DOI:10.1002/jbm.a.30088http://doi.org/10.1002/jbm.a.30088 .
Lei, Y.; Deng, L.; Tang, Y.; Ning, Q.; Lan, X.; Wang, Y . Hybrid pericardium with VEGF-loaded hyaluronic acid hydrogel coating to improve the biological properties of bioprosthetic heart valves . Macromol. Biosci. , 2019 . 19 e1800390 DOI:10.1002/mabi.201800390http://doi.org/10.1002/mabi.201800390 .
Luo, Y.; Huang, S.; Ma, L . Zwitterionic hydrogel-coated heart valves with improved endothelialization and anti-calcification properties . Mater. Sci. Eng. C Mater. Biol. Appl. , 2021 . 128 112329 DOI:10.1016/j.msec.2021.112329http://doi.org/10.1016/j.msec.2021.112329 .
Vasudev, S. C.; Chandy, T . Polyethylene glycol-grafted bovine pericardium: a novel hybrid tissue resistant to calcification . J. Mater. Sci. Mater. Med. , 1999 . 10 121 -128. .
Kristensen, E . M.; Larsson, R.; Sanchez, J.; Rensmo, H.; Gelius, U.; Siegbahn, H. Heparin coating durability on artificial heart valves studied by XPS and antithrombin binding capacity . Colloids Surf. B Biointerfaces , 2006 . 49 1 -7 . DOI:10.1016/j.colsurfb.2006.02.007http://doi.org/10.1016/j.colsurfb.2006.02.007 .
Lim, H. G.; Kim, S. H.; Choi, S. Y.; Kim, Y. J . Anticalcification effects of decellularization, solvent, and detoxification treatment for genipin and glutaraldehyde fixation of bovine pericardium . Eur. J. Cardiothorac. Surg. , 2012 . 41 383 -390 . DOI:10.1016/j.ejcts.2011.05.016http://doi.org/10.1016/j.ejcts.2011.05.016 .
Tam, H.; Zhang, W.; Feaver, K. R.; Parchment, N.; Sacks, M. S.; Vyavahare, N . A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials . Biomaterials , 2015 . 66 83 -91 . DOI:10.1016/j.biomaterials.2015.07.011http://doi.org/10.1016/j.biomaterials.2015.07.011 .
Shen, M.; Kara-Mostefa, A.; Chen, L.; Daudon, M.; Thevenin, M.; Lacour, B.; Carpentier, A . Effect of ethanol and ether in the prevention of calcification of bioprostheses . Ann. Thorac. Surg. , 2001 . 71 S413 -S416 . DOI:10.1016/S0003-4975(01)02521-8http://doi.org/10.1016/S0003-4975(01)02521-8 .
Pathak, C. P.; Adams, A. K.; Simpson, T.; Jr, R. E. P.; Moore, M. A . Treatment of bioprosthetic heart valve tissue with long chain alcohol solution to lower calcification potential . J. Biomed. Mater. Res. , 2004 . 69 140 -144 . DOI:10.1002/jbm.a.20129http://doi.org/10.1002/jbm.a.20129 .
Park, C. S.; Kim, Y. J.; Lee, J. R.; Lim, H. G.; Chang, J. E.; Jeong, S.; Kwon, N. . Anticalcification effect of a combination of decellularization, organic solvents and amino acid detoxification on glutaraldehyde-fixed xenopericardial heart valves in a large-animal long-term circulatory model . Interact. Cardiovasc. Thorac. Surg. , 2017 . 25 391 -399 . DOI:10.1093/icvts/ivx131http://doi.org/10.1093/icvts/ivx131 .
Rybinski, W. V.; Hill, K . Alkyl polyglycosides properties and applications of a new class of surfactants . Angew. Chem. Int. Ed. , 1998 . 37 1328 -1345 . DOI:10.1002/(SICI)1521-3773(19980605)37:10<1328::AID-ANIE1328>3.3.CO;2-0http://doi.org/10.1002/(SICI)1521-3773(19980605)37:10<1328::AID-ANIE1328>3.3.CO;2-0 .
Stoops, J. K.; Arora, R.; Armitage, L.; Wanger, A.; Song, L.; Blackburn, M. R.; Krueger, G. R.; Risin, S. A . Certain surfactants show promise in the therapy of pulmonary tuberculosis . In vivo , 2010 . 24 687 -694 . DOI:10.1089/hum.2009.171http://doi.org/10.1089/hum.2009.171 .
Loke, W. K.; Khor, E . Validation of the shrinkage temperature of animal tissue for bioprosthetic heart valve application by differential scanning calorimetry . Biomoterials , 1995 . 251 -258 . DOI:10.1016/0142-9612(95)92125-Phttp://doi.org/10.1016/0142-9612(95)92125-P .
Kramer, R. Z.; Bella, J.; Brodsky, B.; Mayville, P.; Berman, H. M . Sequence dependent conformational variations of collagen triple-helical structure . Nat. Struct. Biol. , 1999 . 6 454 -457 . DOI:10.1038/8259http://doi.org/10.1038/8259 .
Vyazovkin, S.; Vincent, L.; Sbirrazzuoli, N . Thermal denaturation of collagen analyzed by isoconversional method . Macromol. Biosci. , 2007 . 7 1181 -1186 . DOI:10.1002/mabi.200700162http://doi.org/10.1002/mabi.200700162 .
Shah, M. U. H.; Moniruzzaman, M.; Sivapragasam, M.; Talukder, M. M. R.; Yusup, S. B.; Goto, M . A binary mixture of a biosurfactant and an ionic liquid surfactant as a green dispersant for oil spill remediation . J. Mol. Liq. , 2019 . 280 111 -119 . DOI:10.1016/j.molliq.2019.02.049http://doi.org/10.1016/j.molliq.2019.02.049 .
Jin, D.; Jiang, X.; Jing, X.; Ou, Z . Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene . J. Hazard. Mater. , 2007 . 144 215 -221 . DOI:10.1016/j.jhazmat.2006.10.012http://doi.org/10.1016/j.jhazmat.2006.10.012 .
Singh, R. P.; Gupta, N.; Singh, S.; Singh, A.; Suman, R.; Annie, K. . Toxicity of ionic and nonionic surfactants to six macrobes found in Agra, India . Bull. Environ. Contam. Toxicol. , 2002 . 69 265 -270 . DOI:10.1007/s00128-002-0056-zhttp://doi.org/10.1007/s00128-002-0056-z .
Birk, D. E.; Bruckner, P. Collagen suprastructures. In Collagen: primer in structure, processing and assembly, Brinckmann, J.; Notbohm, H.; Müller, P. K., Eds. Springer, Berlin, 2005; pp. 185−205.
Mienaltowski, M. J.; Gonzales, N. L.; Beall, J. M.; Pechanec, M. Y . Basic structure, physiology, and biochemistry of connective tissues and extracellular matrix collagens . Adv. Exp. Med. Biol. , 2021 . 1348 5 -43 . DOI:10.1007/978-3-030-80614-9_2http://doi.org/10.1007/978-3-030-80614-9_2 .
Xie, Y.; Hu, C.; Feng, Y.; Li, D.; Ai, T.; Huang, Y.; Chen, X.; Huang, L.; Tan, J . Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration . Regen. Biomater. , 2020 . 7 233 -245 . DOI:10.1093/rb/rbaa006http://doi.org/10.1093/rb/rbaa006 .
Luo, H.; Liu, W.; Zhou, Y.; Jiang, X.; Liu, Y.; Yang, Q.; Shao, L . Concentrated growth factor regulates the macrophage-mediated immune response . Regen. Biomater. , 2021 . rbab049 DOI:10.1093/rb/rbab049http://doi.org/10.1093/rb/rbab049 .
Green, J. J.; Elisseeff, J. H . Mimicking biological functionality with polymers for biomedical applications . Nature , 2016 . 540 386 -394 . DOI:10.1038/nature21005http://doi.org/10.1038/nature21005 .
Xu, D.; Huang, J.; Zhao, D.; Ding, B.; Zhang, L.; Cai, J . High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings . Adv. Mater. , 2016 . 28 5844 -5849 . DOI:10.1002/adma.201600448http://doi.org/10.1002/adma.201600448 .
Du, J.; Wang, J. H.; Yu, H. Y.; Zhang, Y. Y.; Pu, L. H.; Wang, J. C.; Lu, S. Y.; Chen, S. H.; Zhu, T. H . Electrospun poly(p-dioxanone)/poly(ester-urethane)ureas composite nanofibers for potential heart valve tissue reconstruction . Chinese J. Polym. Sci. , 2019 . 37 560 -569 . DOI:10.1007/s10118-019-2231-2http://doi.org/10.1007/s10118-019-2231-2 .
Zhang, C.; Lu, H . Helical nonfouling polypeptides for biomedical applications . Chinese J. Polym. Sci. , 2022 . 40 433 -446 . DOI:10.1007/s10118-022-2688-2http://doi.org/10.1007/s10118-022-2688-2 .
Xu, X.; Gao, J.; Liu, S.; Chen, L.; Chen, M.; Yu, X.; Ma, N.; Zhang, J.; Chen, X.; Zhong, L.; Yu, L.; Xu, L.; Guo, Q.; Ding, J . Magnetic resonance imaging for non-invasive clinical evaluation of normal and regenerated cartilage . Regen. Biomater. , 2021 . 8 rbab038 DOI:10.1093/rb/rbab038http://doi.org/10.1093/rb/rbab038 .
Murphy, S. V.; Atala, A . 3D bioprinting of tissues and organs . Nat. Biotechnol. , 2014 . 32 773 -785 . DOI:10.1038/nbt.2958http://doi.org/10.1038/nbt.2958 .
Bai, L.; Zhao, J.; Wang, M.; Feng, Y.; Ding, J . Matrix-metalloproteinase-responsive gene delivery surface for enhanced in situ endothelialization . ACS Appl. Mater. Interfaces , 2020 . 12 40121 -40132 . DOI:10.1021/acsami.0c11971http://doi.org/10.1021/acsami.0c11971 .
Yuan, Z.; Lin, C.; He, Y.; Tao, B.; Chen, M.; Zhang, J.; Liu, P.; Cai, K . Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination . ACS Nano , 2020 . 14 3546 -3562 . DOI:10.1021/acsnano.9b09871http://doi.org/10.1021/acsnano.9b09871 .
Cui, S.; Chen, L.; Yu, L.; Ding, J . Synergism among polydispersed amphiphilic block copolymers leading to spontaneous physical hydrogelation upon heating . Macromolecules , 2020 . 53 7726 -7739 . DOI:10.1021/acs.macromol.0c01430http://doi.org/10.1021/acs.macromol.0c01430 .
Cui, S.; Yu, L.; Ding, J . Strategy of “block blends” to generate polymeric thermogels versus that of one-component block copolymer . Macromolecules , 2020 . 53 11051 -11064 . DOI:10.1021/acs.macromol.0c02488http://doi.org/10.1021/acs.macromol.0c02488 .
Cui, S.; Wei, Y.; Bian, Q.; Zhu, Y.; Chen, X.; Zhuang, Y.; Cai, M.; Tang, J.; Yu, L.; Ding, J . Injectable thermogel generated by the "block blend" strategy as a biomaterial for endoscopic submucosal dissection . ACS Appl. Mater. Interfaces , 2021 . 13 19778 -19792 . DOI:10.1021/acsami.1c03849http://doi.org/10.1021/acsami.1c03849 .
Yu, X.; Li, G.; Zheng, Y.; Gao, J.; Fu, Y.; Wang, Q.; Huang, L.; Pan, X.; Ding, J . 'Invisible' orthodontics by polymeric 'clear' aligners molded on 3D-printed personalized dental models . Regen. Biomater. , 2022 . 9 rbac007 DOI:10.1093/rb/rbac007http://doi.org/10.1093/rb/rbac007 .
Cai, C.; Tang, J.; Zhang, Y.; Rao, W.; Cao, D.; Guo, W.; Yu, L.; Ding, J . Intelligent paper-free sprayable skin mask based on an in situ formed janus hydrogel of an environmentally friendly polymer . Adv. Healthc. Mater. , 2022 . e2102654 DOI:10.1002/adhm.202102654http://doi.org/10.1002/adhm.202102654 .
Rajamannan, N. M.; Evans, F. J.; Aikawa, E.; Grande-Allen, K. J.; Demer, L. L.; Heistad, D. D.; Simmons, C. A.; Masters, K. S.; Mathieu, P.; O'Brien, K. D.; Schoen, F. J.; Towler, D. A.; Yoganathan, A. P.; Otto, C. M. . Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update . Circulation , 2011 . 124 1783 -1791 . DOI:10.1161/CIRCULATIONAHA.110.006767http://doi.org/10.1161/CIRCULATIONAHA.110.006767 .
Yao, X.; Ding, J . Effects of microstripe geometry on guided cell migration . ACS Appl. Mater. Interfaces , 2020 . 12 27971 -27983 . DOI:10.1021/acsami.0c05024http://doi.org/10.1021/acsami.0c05024 .
Liu, Q.; Zheng, S.; Ye, K.; He, J.; Shen, Y.; Cui, S.; Huang, J.; Gu, Y.; Ding, J . Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials . Biomaterials , 2020 . 263 120327 DOI:10.1016/j.biomaterials.2020.120327http://doi.org/10.1016/j.biomaterials.2020.120327 .
Yao, X.; Wang, X.; Ding, J . Exploration of possible cell chirality using material techniques of surface patterning . Acta Biomater. , 2021 . 126 92 -108 . DOI:10.1016/j.actbio.2021.02.032http://doi.org/10.1016/j.actbio.2021.02.032 .
Mao, T.; He, Y.; Gu, Y.; Yang, Y.; Yu, Y.; Wang, X.; Ding, J . Critical frequency and critical stretching rate for reorientation of cells on a cyclically stretched polymer in a microfluidic chip . ACS Appl. Mater. Interfaces , 2021 . 13 13934 -13948 . DOI:10.1021/acsami.0c21186http://doi.org/10.1021/acsami.0c21186 .
Zheng, S.; Liu, Q.; He, J.; Wang, X.; Ye, K.; Wang, X.; Yan, C.; Liu, P.; Ding, J . Critical adhesion areas of cells on micro-nanopatterns . Nano Res. , 2021 . 15 1623 -1635 . DOI:10.1007/s12274-021-3711-6http://doi.org/10.1007/s12274-021-3711-6 .
He, J.; Liu, Q.; Zheng, S.; Shen, R.; Wang, X.; Gao, J.; Wang, Q.; Huang, J.; Ding, J . Enlargement, reduction, and even reversal of relative migration speeds of endothelial and smooth muscle cells on biomaterials simply by adjusting RGD nanospacing . ACS Appl. Mater. Interfaces , 2021 . 13 42344 -42356 . DOI:10.1021/acsami.1c08559http://doi.org/10.1021/acsami.1c08559 .
Dalby, M. J.; Gadegaard, N.; Oreffo, R. O . Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate . Nat. Mater. , 2014 . 13 558 -569 . DOI:10.1038/NMAT3980http://doi.org/10.1038/NMAT3980 .
Xu, W. K.; Tang, J. Y.; Yuan, Z.; Cai, C. Y.; Chen, X. B.; Cui, S. Q.; Liu, P.; Yu, L.; Cai, K. Y.; Ding, J. D . Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA-PEG-PLGA thermogel dressing . Chinese J. Polym. Sci. , 2019 . 37 548 -559 . DOI:10.1007/s10118-019-2212-5http://doi.org/10.1007/s10118-019-2212-5 .
Li, X.; Zhang, W.; Lin, W.; Qiu, H.; Qi, Y.; Ma, X.; Qi, H.; He, Y.; Zhang, H.; Qian, J.; Zhang, G.; Gao, R.; Zhang, D.; Ding, J . Long-term efficacy of biodegradable metal-polymer composite stents after the first and the second implantations into porcine coronary arteries . ACS Appl. Mater. Interfaces , 2020 . 12 15703 -15715 . DOI:10.1021/acsami.0c00971http://doi.org/10.1021/acsami.0c00971 .
Ding, X.; Gao, J.; Yu, X.; Shi, J.; Chen, J.; Yu, L.; Chen, S.; Ding, J . 3D-printed porous scaffolds of hydrogels modified with tgf-beta1 binding peptides to promote in vivo cartilage regeneration and animal gait restoration . ACS Appl. Mater. Interfaces , 2022 . 14 15982 -15995 . DOI:10.1021/acsami.2c00761http://doi.org/10.1021/acsami.2c00761 .
Tu, C. X.; Gao, C. Y . Recent advances on surface-modified biomaterials promoting selective adhesion and directional migration of cells . Chinese J. Polym. Sci. , 2021 . 39 815 -823 . DOI:10.1007/s10118-021-2564-5http://doi.org/10.1007/s10118-021-2564-5 .
Whelan, A.; Williams, E.; Fitzpatrick, E.; Murphy, B. P.; Gunning, P. S.; O'Reilly, D.; Lally, C. . Collagen fibre-mediated mechanical damage increases calcification of bovine pericardium for use in bioprosthetic heart valves . Acta Biomater. , 2021 . 128 384 -392 . DOI:10.1016/j.actbio.2021.04.046http://doi.org/10.1016/j.actbio.2021.04.046 .
Xu, Y.; Nudelman, F.; Eren, E. D.; Wirix, M. J. M.; Cantaert, B.; Nijhuis, W. H.; Hermida-Merino, D.; Portale, G.; Bomans, P. H. H.; Ottmann, C.; Friedrich, H.; Bras, W.; Akiva, A.; Orgel, J.; Meldrum, F. C.; Sommerdijk, N . Intermolecular channels direct crystal orientation in mineralized collagen . Nat. Commun. , 2020 . 11 1 -12 . DOI:10.1038/s41467-020-18846-2http://doi.org/10.1038/s41467-020-18846-2 .
Jones, M.; Eidbo, E. E.; Hilbert, S. L.; Ferrans, V. J.; Clark, R. E . Anticalcification treatments of bioprosthetic heart valves: in vivo studies in sheep . J. Card. Surg. , 1989 . 4 69 -73 . DOI:10.1111/j.1540-8191.1989.tb00258.xhttp://doi.org/10.1111/j.1540-8191.1989.tb00258.x .
Agathos, E. A.; Tomos, P. I.; Kostomitsopoulos, N.; Koutsoukos, P. G . A novel anticalcification treatment strategy for bioprosthetic valves and review of the literature . J. Card. Surg. , 2019 . 34 895 -900 . DOI:10.1111/jocs.14151http://doi.org/10.1111/jocs.14151 .
Gao, J.; Yu, X.; Wang, X.; He, Y.; Ding, J . Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine . Engineering , 2022 . 10 2001404 .
Li, B.; Xie, Z.; Wang, Q.; Chen, X.; Liu, Q.; Wang, W.; Shen, Y.; Liu, J.; Li, A.; Li, Y.; Zhang, G.; Liu, J.; Zhang, D.; Liu, C.; Wang, S.; Xie, Y.; Zhang, Z.; Ding, J . Biodegradable polymeric occluder for closure of atrial septal defect with interventional treatment of cardiovascular disease . Biomaterials , 2021 . 274 120851 DOI:10.1016/j.biomaterials.2021.120851http://doi.org/10.1016/j.biomaterials.2021.120851 .
Pan, Z.; Duan, P.; Liu, X.; Wang, H.; Cao, L.; He, Y.; Dong, J.; Ding, J . Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering . Regen. Biomater. , 2015 . 2 9 -19 . DOI:10.1093/rb/rbv001http://doi.org/10.1093/rb/rbv001 .
Gao, J.; Ding, X.; Yu, X.; Chen, X.; Zhang, X.; Cui, S.; Shi, J.; Chen, J.; Yu, L.; Chen, S.; Ding, J . Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink . Adv. Healthc. Mater. , 2021 . 10 e2001404 DOI:10.1002/adhm.202001404http://doi.org/10.1002/adhm.202001404 .
Shen, Y.; Zhang, W.; Xie, Y.; Li, A.; Wang, X.; Chen, X.; Liu, Q.; Wang, Q.; Zhang, G.; Liu, Q.; Liu, J.; Zhang, D.; Zhang, Z.; Ding, J . Surface modification to enhance cell migration on biomaterials and its combination with 3D structural design of occluders to improve interventional treatment of heart diseases . Biomaterials , 2021 . 279 121208 DOI:10.1016/j.biomaterials.2021.121208http://doi.org/10.1016/j.biomaterials.2021.121208 .
Wang, X.; Lei, X.; Yu, Y.; Miao, S.; Tang, J.; Fu, Y.; Ye, K.; Shen, Y.; Shi, J.; Wu, H.; Zhu, Y.; Yu, L.; Pei, G.; Bi, L.; Ding, J . Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model . Biomater. Sci. , 2021 . 9 5192 -5208 . DOI:10.1039/d1bm00762ahttp://doi.org/10.1039/d1bm00762a .
Aulmann, W.; Sterzel, W. Toxicology of alkyl polyglycosides. in Alkyl Polyglycosides: Technology, Properties and Applications, VCH, Weinheim, New York, 1997, 151−167.
Wu, B.; Jin, L.; Ding, K.; Zhou, Y.; Yang, L.; Lei, Y.; Guo, Y.; Wang, Y . Extracellular matrix coating improves the biocompatibility of polymeric heart valves . J. Mater. Chem. B , 2020 . 8 10616 -10629 . DOI:10.1039/d0tb01884hhttp://doi.org/10.1039/d0tb01884h .
0
浏览量
11
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构