a.School of Medicine, South China University of Technology, Guangzhou 510006, China
b.School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
c.National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
d.Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
mcjwang@scut.edu.cn (J.W.)
djzhi@scut.edu.cn (J.Z.D.)
Scan for full text
A Redox-responsive Prodrug Nanogel of TLR7/8 Agonist for Improved Cancer Immunotherapy[J]. 高分子科学(英文版), 2023,41(1):32-39.
Kai-Shuo Wang, Yu-Feng Jin, Qi-Song Tong, et al. A Redox-responsive Prodrug Nanogel of TLR7/8 Agonist for Improved Cancer Immunotherapy[J]. Chinese Journal of Polymer Science, 2023,41(1):32-39.
A Redox-responsive Prodrug Nanogel of TLR7/8 Agonist for Improved Cancer Immunotherapy[J]. 高分子科学(英文版), 2023,41(1):32-39. DOI: 10.1007/s10118-022-2831-0.
Kai-Shuo Wang, Yu-Feng Jin, Qi-Song Tong, et al. A Redox-responsive Prodrug Nanogel of TLR7/8 Agonist for Improved Cancer Immunotherapy[J]. Chinese Journal of Polymer Science, 2023,41(1):32-39. DOI: 10.1007/s10118-022-2831-0.
A redox-responsive R848-Gel was obtained by emulsion polymerization of HSEMA and R848 prodrug (R848-HSEMA). The R848-Gel reprograms M2-type macrophages to M1-type and stimulates dendritic cells (DCs) activation, reverses the immunosuppression of the tumor microenvironment and finally induces robust anti-tumor immune response.
The existence of tumor immunosuppressive microenvironment (TIME) is the major determinant for the poor efficacy of current tumor immunotherapy. Tumor-associated macrophages (TAMs) tend to become tumor-promoting M2-like phenotype and hinder immune response in solid tumors. Repolarization of TAMs from M2 to anti-tumor M1 phenotype is robust for remodeling the TIME. Herein, we developed a redox-responsive nanogel as the delivery system of Toll-like receptor 7 and 8 (TLR7/8) agonist (R848) prodrug for potent cancer immunotherapy. The nanogel (denoted as R848-Gel) was obtained by emulsion polymerization of HSEMA and R848 prodrug (R848-HSEMA), whose size was appropriate 100 nm. R848-Gel could be internalized by macrophages and dendritic cells ,in vitro, and effectively repolarized M2 into M1 macrophages and promoted the maturation of antigen-presenting cells. ,In vivo, study indicated that the R848-Gel showed a stronger tumor inhibitory effect and no drastic body weight change compared with free drug. Immune cell analysis after the treatment indicated that R848-Gel was helpful to activating the TIME. In summary, this study provides a simple but effective vehicle for R848 to improve cancer immunotherapy.
NanogelDrug deliveryTumor-associated macrophageMacrophage repolarizationCancer immunotherapy
Farkona, S. ; Diamandis, E. P. ; Blasutig, I. M . Cancer immunotherapy: the beginning of the end of cancer? . BMC Med. , 2016 . 14 73 .
Harbeck, N.; Gnant, M . Breast cancer . Lancet , 2017 . 389 1134 -1150. .
Lippman, S. M.; Hawk, E. T . Cancer prevention: from 1727 to milestones of the past 100 years . Cancer Res. , 2009 . 69 5269 -5284. .
Zhang, Y.; Zhang, Z . The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications . Cell. Mol. Immunol. , 2020 . 17 807 -821 . DOI:10.1038/s41423-020-0488-6http://doi.org/10.1038/s41423-020-0488-6 .
Kennedy, L. B.; Salama, A. K. S . A review of cancer immunotherapy toxicity . CA Cancer J. Clin. , 2020 . 70 86 -104. .
Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J . Delivery technologies for cancer immunotherapy . Nat. Rev. Drug Discov. , 2019 . 18 175 -196 . DOI:10.1038/s41573-018-0006-zhttp://doi.org/10.1038/s41573-018-0006-z .
Schoenfeld, J. D.; Hanna, G. J.; Jo, V. Y.; Rawal, B.; Chen, Y. H.; Catalano, P. S.; Lako, A.; Ciantra, Z.; Weirather, J. L.; Criscitiello, S.; Luoma, A.; Chau, N.; Lorch, J.; Kass, J. I.; Annino, D.; Goguen, L.; Desai, A.; Ross, B.; Shah, H. J.; Jacene, H. A.; Margalit, D. N.; Tishler, R. B.; Wucherpfennig, K. W.; Rodig, S. J.; Uppaluri, R.; Haddad, R. I . Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: a phase 2 open-label randomized clinical trial . JAMA oncol. , 2020 . 6 1563 -1570 . DOI:10.1001/jamaoncol.2020.2955http://doi.org/10.1001/jamaoncol.2020.2955 .
Waterhouse, D. M.; Garon, E. B.; Chandler, J.; McCleod, M.; Hussein, M.; Jotte, R.; Horn, L.; Daniel, D. B.; Keogh, G.; Creelan, B.; Einhorn, L. H.; Baker, J.; Kasbari, S.; Nikolinakos, P.; Babu, S.; Couture, F.; Leighl, N. B.; Reynolds, C.; Blumenschein, G., Jr.; Gunuganti, V.; Li, A.; Aanur, N.; Spigel, D. R . Continuous versus 1-year fixed-duration nivolumab in previously treated advanced non-small-cell lung cancer: CheckMate 153 . Jpn. J. Clin. Oncol. , 2020 . 38 3863 -3873. .
Cassetta, L.; Pollard, J. W . Targeting macrophages: therapeutic approaches in cancer . Nat. Rev. Drug Discov. , 2018 . 17 887 -904 . DOI:10.1038/nrd.2018.169http://doi.org/10.1038/nrd.2018.169 .
Quail, D. F.; Joyce, J. A . Microenvironmental regulation of tumor progression and metastasis . Nat. Med. , 2013 . 19 1423 -1437 . DOI:10.1038/nm.3394http://doi.org/10.1038/nm.3394 .
Elia, I.; Haigis, M. C . Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism . Nat. Metab. , 2021 . 3 21 -32 . DOI:10.1038/s42255-020-00317-zhttp://doi.org/10.1038/s42255-020-00317-z .
Bejarano, L.; Jordāo, M. J. C.; Joyce, J. A . Therapeutic targeting of the tumor microenvironment . Cancer Discov. , 2021 . 11 933 -959. .
Bronte, V.; Murray, P. J . Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer . Nat. Med. , 2015 . 21 117 -119 . DOI:10.1038/nm.3794http://doi.org/10.1038/nm.3794 .
Jurk, M.; Heil, F.; Vollmer, J.; Schetter, C.; Krieg, A. M.; Wagner, H.; Lipford, G.; Bauer, S . Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848 . Nat. Immunol. , 2002 . 3 499 DOI:10.1038/ni0602-499http://doi.org/10.1038/ni0602-499 .
Krieg, A. M.; Vollmer, J . Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity . Immunol. Rev. , 2007 . 220 251 -269. .
Sami, E.; Paul, B. T.; Koziol, J. A.; ElShamy, W. M . The Immunosuppressive Microenvironment in BRCA1-IRIS-Overexpressing TNBC Tumors is Induced by Bidirectional Interaction with Tumor-Associated Macrophages . Cancer Res. , 2020 . 80 1102 -1117 . DOI:10.1158/0008-5472.CAN-19-2374http://doi.org/10.1158/0008-5472.CAN-19-2374 .
Marciscano, A. E.; Anandasabapathy, N . The role of dendritic cells in cancer and anti-tumor immunity . Semin. Immunol. , 2021 . 52 101481 DOI:10.1016/j.smim.2021.101481http://doi.org/10.1016/j.smim.2021.101481 .
Xun, Y.; Yang, H.; Kaminska, B.; You, H . Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma . J. Hematol. Oncol. , 2021 . 14 176 .
Kim, S. Y.; Kim, S.; Kim, J. E.; Lee, S. N.; Shin, I. W.; Shin, H. S.; Jin, S. M.; Noh, Y. W.; Kang, Y. J.; Kim, Y. S.; Kang, T. H.; Park, Y. M.; Lim, Y. T . Lyophilizable and multifaceted toll-like receptor 7/8 agonist-loaded nanoemulsion for the reprogramming of tumor microenvironments and enhanced cancer immunotherapy . ACS Nano , 2019 . 13 12671 -12686 . DOI:10.1021/acsnano.9b04207http://doi.org/10.1021/acsnano.9b04207 .
Michaelis, K. A.; Norgard, M. A.; Zhu, X.; Levasseur, P. R.; Sivagnanam, S.; Liudahl, S. M.; Burfeind, K. G.; Olson, B.; Pelz, K. R.; Angeles Ramos, D. M.; Maurer, H. C.; Olive, K. P.; Coussens, L. M.; Morgan, T. K.; Marks, D. L . The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer . Nat. Commun. , 2019 . 10 4682 DOI:10.1038/s41467-019-12657-whttp://doi.org/10.1038/s41467-019-12657-w .
Bahmani, B.; Gong, H.; Luk, B. T.; Haushalter, K. J.; DeTeresa, E.; Previti, M.; Zhou, J.; Gao, W.; Bui, J. D.; Zhang, L.; Fang, R. H.; Zhang, J . Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors . Nat. Commun. , 2021 . 12 1999 DOI:10.1038/s41467-021-22311-zhttp://doi.org/10.1038/s41467-021-22311-z .
Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R . TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy . Nat. Biomed. Eng. , 2018 . 2 578 -588 . DOI:10.1038/s41551-018-0236-8http://doi.org/10.1038/s41551-018-0236-8 .
Li, H.; Somiya, M.; Kuroda, S. I . Enhancing antibody-dependent cellular phagocytosis by Re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes . Biomaterials , 2021 . 268 120601 DOI:10.1016/j.biomaterials.2020.120601http://doi.org/10.1016/j.biomaterials.2020.120601 .
Wu, J. S.; Li, J. X.; Shu, N.; Duan, Q. J.; Tong, Q. S.; Zhang, J. Y.; Huang, Y. C.; Yang, S. Y.; Zhao, Z. B.; Du, J. Z . A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy . Nano Res. , 2021 . 15 510 -518. .
Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A.; Buechler, C. R.; Quinn, K. M.; Smelkinson, M. G.; Vanek, O.; Cawood, R.; Hills, T.; Vasalatiy, O.; Kastenmüller, K.; Francica, J. R.; Stutts, L.; Tom, J. K.; Ryu, K. A.; Esser-Kahn, A. P.; Etrych, T.; Fisher, K. D.; Seymour, L. W.; Seder, R. A . In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity . Nat. Biotechnol. , 2015 . 33 1201 -1210 . DOI:10.1038/nbt.3371http://doi.org/10.1038/nbt.3371 .
Wagner, J.; Gossl, D.; Ustyanovska, N.; Xiong, M.; Hauser, D.; Zhuzhgova, O.; Hocevar, S.; Taskoparan, B.; Poller, L.; Datz, S.; Engelke, H.; Daali, Y.; Bein, T.; Bourquin, C . Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice . ACS Nano , 2021 . 15 4450 -4466 . DOI:10.1021/acsnano.0c08384http://doi.org/10.1021/acsnano.0c08384 .
Lynn, G. M.; Sedlik, C.; Baharom, F.; Zhu, Y.; Ramirez-Valdez, R. A.; Coble, V. L.; Tobin, K.; Nichols, S. R.; Itzkowitz, Y.; Zaidi, N.; Gammon, J. M.; Blobel, N. J.; Denizeau, J.; de la Rochere, P.; Francica, B. J.; Decker, B.; Maciejewski, M.; Cheung, J.; Yamane, H.; Smelkinson, M. G.; Francica, J. R.; Laga, R.; Bernstock, J. D.; Seymour, L. W.; Drake, C. G.; Jewell, C. M.; Lantz, O.; Piaggio, E.; Ishizuka, A. S.; Seder, R. A . Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens . Nat. Biotechnol. , 2020 . 38 320 -332 . DOI:10.1038/s41587-019-0390-xhttp://doi.org/10.1038/s41587-019-0390-x .
Pinelli, F.; Saadati, M.; Zare, E. N.; Makvandi, P.; Masi, M.; Sacchetti, A.; Rossi, F . A perspective on the applications of functionalized nanogels: promises and challenges . Int. Mat. Rev. , 2022 . 1 -25. .
Gao, X.; Li, S.; Ding, F.; Liu, X.; Wu, Y.; Li, J.; Feng, J.; Zhu, X.; Zhang, C . A virus-mimicking nucleic acid nanogel reprograms microglia and macrophages for glioblastoma therapy . Adv. Mater. , 2021 . 33 e2006116 .
Wang, H.; Gao, L.; Fan, T.; Zhang, C.; Zhang, B.; Al-Hartomy, O. A.; Al-Ghamdi, A.; Wageh, S.; Qiu, M.; Zhang, H . Strategic design of intelligent-responsive nanogel carriers for cancer therapy . ACS Appl. Mater. , 2021 . 13 54621 -54647 . DOI:10.1021/acsami.1c13634http://doi.org/10.1021/acsami.1c13634 .
Knipe, J. M.; Strong, L. E.; Peppas, N. A . Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-alpha Knockdown in the Intestine . Biomacromolecules , 2016 . 17 788 -797 . DOI:10.1021/acs.biomac.5b01518http://doi.org/10.1021/acs.biomac.5b01518 .
Yang, C.; Wang, X.; Yao, X.; Zhang, Y.; Wu, W.; Jiang, X . Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery . J. Control. Rel. , 2015 . 205 206 -217 . DOI:10.1016/j.jconrel.2015.02.008http://doi.org/10.1016/j.jconrel.2015.02.008 .
0
浏览量
7
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构