a.Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
wujs@mail.ipc.ac.cn (J.S.W.)
wangpf@mail.ipc.ac.cn (P.F.W.)
纸质出版日期:2022-09-01,
网络出版日期:2022-07-12,
收稿日期:2022-04-06,
修回日期:2022-04-29,
录用日期:2022-05-07
Scan QR Code
Jiang, M. Y.; Wu, J. S.; Liu, W. M.; Ren, H. H.; Wang, X.; Wang, P. F. Porphyrin-based nanosonosensitizers combined with targeting peptides for sonodynamic therapy of glioma. Chinese J. Polym. Sci. 2022, 40, 1120–1128
Mei-Yu Jiang, Jia-Sheng Wu, Wei-Min Liu, et al. Porphyrin-based Nanosonosensitizers Combined with Targeting Peptides for Sonodynamic Therapy of Glioma[J]. Chinese Journal of Polymer Science, 2022,40(9):1120-1128.
Jiang, M. Y.; Wu, J. S.; Liu, W. M.; Ren, H. H.; Wang, X.; Wang, P. F. Porphyrin-based nanosonosensitizers combined with targeting peptides for sonodynamic therapy of glioma. Chinese J. Polym. Sci. 2022, 40, 1120–1128 DOI: 10.1007/s10118-022-2795-0.
Mei-Yu Jiang, Jia-Sheng Wu, Wei-Min Liu, et al. Porphyrin-based Nanosonosensitizers Combined with Targeting Peptides for Sonodynamic Therapy of Glioma[J]. Chinese Journal of Polymer Science, 2022,40(9):1120-1128. DOI: 10.1007/s10118-022-2795-0.
In this work
T-cRGD NPs
was obtained by the self-assembly of DSPE-PEG-cRGD and TPP-PPh3-4PEG for targeting sonodynamic therapy. Peptide targeting endows
T-cRGD NPs
with superior ultrasound therapeutic efficacy and tumor enrichment ability.
Traditional cancer treatments have disadvantages of large trauma area and toxic side effects while killing cancer cells. Peptide-targeted sonodynamic therapy (SDT) can effectively improve specificity of cancer treatment and overcome the problem of low tissue penetration depth caused by a photo-driven therapy. Herein
we developed a porphyrin-based sonosensitizer with a water-soluble polymer as a biological carrier and a cRGD peptide for tumor targeting
which constituted a nano sonosensitizer (
T-cRGD NPs
) for fluorescence imaging-guided sonodynamic therapy. A comparable sonosensitizer (
T-PEG NPs
) without the targeting unit was also prepared for illustration of therapeutic performance. Attribute to the role of peptide targeting
T-cRGD NPs
can accumulate and enter tumor cells for fluorescence imaging and show a superior SDT effect than
T-PEG NPs
in vitro
. The imaging
in vivo
reveals that
T-cRGD NPs
can enrich in tumor tissues within 14 h with a good biocompatibility.
Sonodynamic therapyGliomaCyclic peptideTarget enrichmentDeep penetration
Behin, A.; Hoang-Xuan, K.; Carpentier, A. F.; Delattre, J. Y . Primary brain tumours in adults . The Lancet , 2003 . 361 323 -331 . DOI:10.1016/S0140-6736(03)12328-8http://doi.org/10.1016/S0140-6736(03)12328-8 .
Sharma, G. N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K. K . Various types and management of breast cancer: an overview . J. Adv. Pharm. Technol. Res. , 2010 . 1 109 -126. .
Didkowska, J.; Wojciechowska, U.; Mańczuk, M.; Łobaszewski, J . Lung cancer epidemiology: contemporary and future challenges worldwide . Ann. Transl. Med. , 2016 . 4 150 -150 . DOI:10.21037/atm.2016.03.11http://doi.org/10.21037/atm.2016.03.11 .
Schirrmacher, V . From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review) . Int. J. Oncol. , 2019 . 54 407 -419. .
Zheng, X.; Bian, S.; Liu, W.; Zhang, C.; Wu, J.; Ren, H.; Zhang, W.; Lee, C. S.; Wang, P . Amphiphilic diketopyrrolopyrrole derivatives for efficient near-infrared fluorescence imaging and photothermal therapy . ACS Omega , 2021 . 6 26575 -26582 . DOI:10.1021/acsomega.1c03947http://doi.org/10.1021/acsomega.1c03947 .
Moan, J.; Peng, Q . An outline of the history of PDT . Anticancer Res. , 2003 . 23 3591 -3600. .
Park, W.; Cho, S.; Han, J.; Shin, H.; Na, K.; Lee, B.; Kim, D.-H . Advanced smart-photosensitizers for more effective cancer treatment . Biomater. Sci. , 2018 . 6 79 -90 . DOI:10.1039/C7BM00872Dhttp://doi.org/10.1039/C7BM00872D .
Jin, J.; Zhu, Y.; Zhang, Z.; Zhang, W . Enhancing the efficacy of photodynamic therapy through a porphyrin/POSS alternating copolymer . Angew. Chem. Int. Ed. , 2018 . 57 16354 -16358 . DOI:10.1002/anie.201808811http://doi.org/10.1002/anie.201808811 .
Zheng, X.; Liu, W.; Ge, J.; Jia, Q.; Nan, F.; Ding, Y.; Wu, J.; Zhang, W.; Lee, C. S.; Wang, P . Biodegradable natural product-based nanoparticles for near-infrared fluorescence imaging-guided sonodynamic therapy . ACS Appl. Mater. Interfaces , 2019 . 11 18178 -18185 . DOI:10.1021/acsami.9b03270http://doi.org/10.1021/acsami.9b03270 .
Kim, H. M.; Cho, B. R . Small-molecule two-photon probes for bioimaging applications . Chem. Rev. , 2015 . 115 5014 -5055 . DOI:10.1021/cr5004425http://doi.org/10.1021/cr5004425 .
Jin, G.; He, R.; Liu, Q.; Lin, M.; Dong, Y.; Li, K.; Tang, B . Z.; Liu, B.; Xu, F. Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles . Theranostics , 2019 . 9 246 -264 . DOI:10.7150/thno.30174http://doi.org/10.7150/thno.30174 .
Umemura, S . I.; Yumita, N.; Nishigaki, R.; Umemura, K. Sonochemical activation of hematoporphyrin: a potential modality for cancer treatment . Ultrason. Sympos. Proceed. , 1989 . 2 955 -960. .
Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. I . Synergistic Effect of Ultrasound and Hematoporphyrin on Sarcoma . Jap. J. Cancer Res. , 1990 . 81 304 -308 . DOI:10.1111/j.1349-7006.1990.tb02565.xhttp://doi.org/10.1111/j.1349-7006.1990.tb02565.x .
Son, S.; Kim, J. H.; Wang, X.; Zhang, C.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J.; Kim, J. S . Multifunctional sonosensitizers in sonodynamic cancer therapy . Chem. Soc. Rev. , 2020 . 49 3244 -3261 . DOI:10.1039/C9CS00648Fhttp://doi.org/10.1039/C9CS00648F .
Canavese, G.; Ancona, A.; Racca, L.; Canta, M.; Dumontel, B.; Barbaresco, F.; Limongi, T.; Cauda, V . Nanoparticle-assisted ultrasound: a special focus on sonodynamic therapy against cancer . Chem. Eng. J. , 2018 . 340 155 -172 . DOI:10.1016/j.cej.2018.01.060http://doi.org/10.1016/j.cej.2018.01.060 .
Hoogenboom, M.; Eikelenboom, D.; den Brok, M. H.; Heerschap, A.; Fütterer, J. J.; Adema, G. J . Mechanical high-intensity focused ultrasound destruction of soft tissue: working mechanisms and physiologic effects . Ultrasound Med. Biol. , 2015 . 41 1500 -1517 . DOI:10.1016/j.ultrasmedbio.2015.02.006http://doi.org/10.1016/j.ultrasmedbio.2015.02.006 .
Choi, V.; Rajora, M.; Zheng, G . Activating drugs with sound: mechanisms behind sonodynamic therapy and the role of nanomedicine . Bioconjug. Chem. , 2020 . 31 967 -989 . DOI:10.1021/acs.bioconjchem.0c00029http://doi.org/10.1021/acs.bioconjchem.0c00029 .
Lin, X.; Song, J.; Chen, X.; Yang, H . Ultrasound-activated sensitizers and applications . Angew. Chem. Int. Ed. , 2020 . 59 14212 -14233 . DOI:10.1002/anie.201906823http://doi.org/10.1002/anie.201906823 .
Yumita, N.; Sakata, I.; Nakajima, S.; Umemura, S. I . Ultrasonically induced cell damage and active oxygen generation by 4-formyloximeetylidene-3-hydroxyl-2-vinyl-deuterio-porphynyl(IX)-6-7-diaspartic acid: on the mechanism of sonodynamic activation . Biochim. Biophys. Acta , 2003 . 1620 179 -184 . DOI:10.1016/S0304-4165(02)00530-5http://doi.org/10.1016/S0304-4165(02)00530-5 .
Yumita, N.; Kawabata, K. I.; Sasaki, K.; Umemura, S. I. Sonodynamic effect of erythrosin B on sarcoma 180 cells in vitro. Ultrason. Sonochem. 2002, 9, 259-265.
An, R.; Cheng, X.; Wei, S.; Hu, Y.; Sun, Y.; Huang, Z.; Chen, H. Y.; Ye, D . Smart magnetic and fluorogenic photosensitizer nanoassemblies enable redox-driven disassembly for photodynamic therapy . Angew. Chem. Int. Ed. , 2020 . 59 20636 -20644 . DOI:10.1002/anie.202009141http://doi.org/10.1002/anie.202009141 .
Zhang, C.; Wu, J.; Liu, W.; Zheng, X.; Zhang, W.; Lee, C. S.; Wang, P . Hypocrellin-based multifunctional phototheranostic agent for NIR-triggered targeted chemo/photodynamic/photothermal synergistic therapy against glioblastoma . ACS Appl. Bio Mater. , 2020 . 3 3817 -3826 . DOI:10.1021/acsabm.0c00386http://doi.org/10.1021/acsabm.0c00386 .
Huveneers, S.; Truong, H.; Danen, E. H. J . Integrins: signaling, disease, and therapy . Int. J. Radiat. Biol. , 2007 . 83 743 -751 . DOI:10.1080/09553000701481808http://doi.org/10.1080/09553000701481808 .
Cai, W.; Chen, X . Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism . Anticancer Agents Med. Chem. , 2006 . 6 407 -428 . DOI:10.2174/187152006778226530http://doi.org/10.2174/187152006778226530 .
Wallbrunn, A.; Höltke, C.; Zühlsdorf, M.; Heindel, W.; Schäfers, M.; Bremer, C . In vivo imaging of integrin ανβ3 expression using fluorescence-mediated tomography . Eur. J. Nucl. Med. Mol. Imaging , 2007 . 34 745 -754 . DOI:10.1007/s00259-006-0269-1http://doi.org/10.1007/s00259-006-0269-1 .
Humphries, J. D.; Byron, A.; Humphries, M. J . Integrin ligands at a glance . J. Cell. Sci. , 2006 . 119 3901 -3903 . DOI:10.1242/jcs.03098http://doi.org/10.1242/jcs.03098 .
Haubner, R.; Bruchertseifer, F.; Bock, M.; Kessler, H.; Schwaiger, M.; Wester, H.-J . Synthesis and biological evaluation of a Tc-labelled cyclic RGD peptide for imaging the αvβ3 expression . Nuklearmed-Nucl med , 2004 . 43 26 -32 . DOI:10.1055/s-0038-1623911http://doi.org/10.1055/s-0038-1623911 .
Jiang, M.; Wu, J.; Liu, W.; Ren, H.; Zhang, W.; Lee, C. S.; Wang, P . Self-assembly of amphiphilic porphyrins to construct nanoparticles for highly efficient photodynamic therapy . Chem. Eur. J. , 2021 . 27 11195 -11204 . DOI:10.1002/chem.202101199http://doi.org/10.1002/chem.202101199 .
Ragàs, X.; Jiménez-Banzo, A.; Sánchez-García, D.; Batllori, X.; Nonell, S . Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green® . Chem. Commun. , 2009 . 2920 -2922. .
Merlin, J.; Azzi, S.; Lignon, D.; Ramacci, C.; Zeghari, N.; Guillemin, F . MTT assays allow quick and reliable measurement of the response of human tumor cells to photodynamic therapy . Eur. J. Cancer , 1992 . 28 1452 -1458 . DOI:10.1016/0959-8049(92)90542-Ahttp://doi.org/10.1016/0959-8049(92)90542-A .
Cai, X.; Bandla, A.; Chuan, C. K.; Magarajah, G.; Liao, L. D.; Teh, D. B. L.; Kennedy, B. K.; Thakor, N. V.; Liu, B . Identifying glioblastoma margins using dual-targeted organic nanoparticles for efficient in vivo fluorescence image-guided photothermal therapy . Mater. Horiz. , 2019 . 6 311 -317 . DOI:10.1039/C8MH00946Ehttp://doi.org/10.1039/C8MH00946E .
0
浏览量
58
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构