a.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
b.Yiwu Research Institute of Fudan University, Yiwu 322000, China
jcfeng@fudan.edu.cn
Scan for full text
Reversible Plasticity Shape Memory Effect in SEBS/Crystallizable Paraffin: Influence of Paraffin Content[J]. 高分子科学(英文版), 2022,40(12):1697-1705.
Shao-Quan Zhao, Jia-Chun Feng. Reversible Plasticity Shape Memory Effect in SEBS/Crystallizable Paraffin: Influence of Paraffin Content[J]. Chinese Journal of Polymer Science, 2022,40(12):1697-1705.
Reversible Plasticity Shape Memory Effect in SEBS/Crystallizable Paraffin: Influence of Paraffin Content[J]. 高分子科学(英文版), 2022,40(12):1697-1705. DOI: 10.1007/s10118-022-2789-y.
Shao-Quan Zhao, Jia-Chun Feng. Reversible Plasticity Shape Memory Effect in SEBS/Crystallizable Paraffin: Influence of Paraffin Content[J]. Chinese Journal of Polymer Science, 2022,40(12):1697-1705. DOI: 10.1007/s10118-022-2789-y.
The relationship between reversible plasticity shape memory performance of SEBS/crystallizable paraffin and its microstructure was systematically established.
Polymers with reversible plasticity shape memory effect (RPSME) have attracted considerable attention due to their simple programming and large deformation. However, the exact mechanisms of RPSME are still not thoroughly understood. In this work, the RPSME of SEBS/crystallizable paraffin was investigated by comparatively analyzing the performances and microstructures of samples with different paraffin content. It was found the shape fixing ratios (,R,f,s) of samples increased with the paraffin content, and interestingly, a significant improvement in ,R,f, was observed when the paraffin content exceeded 60 wt%. Tensile test results showed that the deformation characteristics of samples changed from elastic to plastic as the paraffin content increased above 60 wt%. By exploring the crystallization behaviors of paraffin in various SEBS/paraffin samples, it was revealed that the microstructures of SEBS/paraffin were different when the paraffin content was below 50 wt% and above 60 wt%. In samples with low paraffin content (below 50 wt%), nearly all paraffin was co-crystallized with ethylene-co-butylene (EB) chains and its crystallization was severely restricted; while in samples with high paraffin content (above 60 wt%), “excess” paraffin appeared and this part of paraffin crystallized on the template of the EB/paraffin co-crystals, which might be responsible for the elastic-to-plastic transition and the sharp increase in ,R,f,. Based on the above results, a possible structural model was proposed to explain the exact mechanism of RPSME in SEBS/paraffin.
Reversible plasticity shape memory effectPoly(styrene-b-(ethylene-co-butylene)-b-styrene) Crystallizable paraffinParaffin content
Behl, M.; Razzaq, M. Y.; Lendlein, A . Multifunctional shape-memory polymers . Adv. Mater. , 2010 . 22 3388 -3410 . DOI:10.1002/adma.200904447http://doi.org/10.1002/adma.200904447 .
Chan, B. Q. Y.; Low, Z. W. K.; Heng, S. J. W.; Chan, S. Y.; Owh, C.; Loh, X. J . Recent advances in shape memory soft materials for biomedical applications . ACS Appl. Mater. Interfaces , 2016 . 8 10070 -10087 . DOI:10.1021/acsami.6b01295http://doi.org/10.1021/acsami.6b01295 .
Delaey, J.; Dubruel, P.; Van Vlierberghe, S . Shape-memory polymers for biomedical applications . Adv. Funct. Mater. , 2020 . 30 1909047 DOI:10.1002/adfm.201909047http://doi.org/10.1002/adfm.201909047 .
Li, F.; Liu, Y.; Leng, J . Progress of shape memory polymers and their composites in aerospace applications . Smart Mater. Struct. , 2019 . 28 103003 DOI:10.1088/1361-665X/ab3d5fhttp://doi.org/10.1088/1361-665X/ab3d5f .
Liu, R.; Kuang, X.; Deng, J.; Wang, Y. C.; Wang, A. C.; Ding, W.; Lai, Y. C.; Chen, J.; Wang, P.; Lin, Z.; Qi, H. J.; Sun, B.; Wang, Z. L . Shape memory polymers for body motion energy harvesting and self-powered mechanosensing . Adv. Mater. , 2018 . 30 1705195 DOI:10.1002/adma.201705195http://doi.org/10.1002/adma.201705195 .
Lendlein, A.; Kelch, S . Shape-memory polymers . Angew. Chem. Int. Ed. , 2002 . 41 2034 -2057 . DOI:10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-Mhttp://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M .
Hu, X.; Zhang, D.; Sheiko, S. S . Cooling-triggered shapeshifting hydrogels with multi-shape memory performance . Adv. Mater. , 2018 . 30 e1707461 DOI:10.1002/adma.201707461http://doi.org/10.1002/adma.201707461 .
Li, T.; Li, Y.; Wang, X.; Li, X.; Sun, J . Thermally and near-infrared light-induced shape memory polymers capable of healing mechanical damage and fatigued shape memory function . ACS Appl. Mater. Interfaces , 2019 . 11 9470 -9477 . DOI:10.1021/acsami.8b21970http://doi.org/10.1021/acsami.8b21970 .
Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 2015, 49-50, 3-33.
Luo, Y.; Guo, Y.; Gao, X.; Li, B.-G.; Xie, T . A general approach towards thermoplastic multishape-memory polymers via sequence structure design . Adv. Mater. , 2013 . 25 743 -748 . DOI:10.1002/adma.201202884http://doi.org/10.1002/adma.201202884 .
Kratz, K.; Madbouly, S . A.; Wagermaier, W.; Lendlein, A. Temperature-memory polymer networks with crystallizable controlling units . Adv. Mater. , 2011 . 23 4058 -4062 . DOI:10.1002/adma.201102225http://doi.org/10.1002/adma.201102225 .
Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J . A review of shape memory polymers and composites: mechanisms, materials, and applications . Adv. Mater. , 2021 . 33 2000713 DOI:10.1002/adma.202000713http://doi.org/10.1002/adma.202000713 .
Voit, W.; Ware, T.; Dasari, R. R.; Smith, P.; Danz, L.; Simon, D.; Barlow, S.; Marder, S. R.; Gall, K . High-strain shape-memory polymers . Adv. Funct. Mater. , 2010 . 20 162 -171 . DOI:10.1002/adfm.200901409http://doi.org/10.1002/adfm.200901409 .
Xie, T . Recent advances in polymer shape memory . Polymer , 2011 . 52 4985 -5000 . DOI:10.1016/j.polymer.2011.08.003http://doi.org/10.1016/j.polymer.2011.08.003 .
Rodriguez, E. D.; Luo, X.; Mather, P. T . Linear/network poly(epsilon-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH) . ACS Appl. Mater. Interfaces , 2011 . 3 152 -161 . DOI:10.1021/am101012chttp://doi.org/10.1021/am101012c .
Hashmi, S. A. R.; Prasad, H. C.; Abishera, R.; Bhargaw, H. N.; Naik, A . Improved recovery stress in multi-walled-carbon-nanotubes reinforced polyurethane . Mater. Design , 2015 . 67 492 -500 . DOI:10.1016/j.matdes.2014.10.062http://doi.org/10.1016/j.matdes.2014.10.062 .
Du, H.; Liu, L.; Zhang, F.; Zhao, W.; Leng, J.; Liu, Y . Thermal-mechanical behavior of styrene-based shape memory polymer tubes . Polym. Test. , 2017 . 57 119 -125 . DOI:10.1016/j.polymertesting.2016.11.011http://doi.org/10.1016/j.polymertesting.2016.11.011 .
Zhang, X.; Tang, Z.; Guo, B . Reversible plasticity shape memory polymers: key factors and applications . J. Polym. Sci., Part B: Polym. Phys. , 2016 . 54 1295 -1299 . DOI:10.1002/polb.23916http://doi.org/10.1002/polb.23916 .
Koerner, H.; Price, G.; Pearce, N. A.; Alexander, M.; Vaia, R. A . Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers . Nat. Mater. , 2004 . 3 115 -120 . DOI:10.1038/nmat1059http://doi.org/10.1038/nmat1059 .
Lewis, C . L.; Meng, Y.; Anthamatten, M. Well-defined shape-memory networks with high elastic energy capacity . Macromolecules , 2015 . 48 4918 -4926 . DOI:10.1021/acs.macromol.5b00763http://doi.org/10.1021/acs.macromol.5b00763 .
Lin, T.; Tang, Z.; Guo, B . New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates . ACS Appl. Mater. Interfaces , 2014 . 6 21060 -21068 . DOI:10.1021/am505937phttp://doi.org/10.1021/am505937p .
Li, G.; Xu, W . Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: testing and constitutive modeling . J. Mech. Phys. Solids , 2011 . 59 1231 -1250 . DOI:10.1016/j.jmps.2011.03.001http://doi.org/10.1016/j.jmps.2011.03.001 .
Abishera, R.; Velmurugan, R.; Gopal, K. V. N . Reversible plasticity shape memory effect in epoxy/CNT nanocomposites—a theoretical study . Compos. Sci. Technol. , 2017 . 141 145 -153 . DOI:10.1016/j.compscitech.2017.01.020http://doi.org/10.1016/j.compscitech.2017.01.020 .
Abishera, R.; Velmurugan, R.; Gopal, K. V. N . Reversible plasticity shape memory effect in carbon nanotubes reinforced epoxy nanocomposites . Compos. Sci. Technol. , 2016 . 137 148 -158 . DOI:10.1016/j.compscitech.2016.10.030http://doi.org/10.1016/j.compscitech.2016.10.030 .
Abishera, R.; Velmurugan, R.; Gopal, K. V. N . Reversible plasticity shape memory effect in carbon nanotube/epoxy nanocomposites: shape recovery studies for torsional and bending deformations . Polym. Eng. Sci. , 2018 . 58 189 -198 . DOI:10.1002/pen.24861http://doi.org/10.1002/pen.24861 .
Lakhera, N.; Yakacki, C. M.; Nguyen, T. D.; Frick, C. P . Partially constrained recovery of (meth)acrylate shape-memory polymer networks . J. Appl. Polym. Sci. , 2012 . 126 72 -82 . DOI:10.1002/app.36612http://doi.org/10.1002/app.36612 .
Song, S. J.; Feng, J. C.; Wu, P. Y . A new strategy to prepare polymer-based shape memory elastomers . Macromol. Rapid Commun. , 2011 . 32 1569 -1575 . DOI:10.1002/marc.201100298http://doi.org/10.1002/marc.201100298 .
Chen, S. Y.; Zhang, Q. L.; Feng, J. C . 3D printing of tunable shape memory polymer blends . J. Mater. Chem. C , 2017 . 5 8361 -8365 . DOI:10.1039/C7TC02534Chttp://doi.org/10.1039/C7TC02534C .
Zhang, Q. L.; Song, S. J.; Feng, J. C.; Wu, P. Y . A new strategy to prepare polymer composites with versatile shape memory properties . J. Mater. Chem. , 2012 . 22 24776 -24782 . DOI:10.1039/c2jm35619hhttp://doi.org/10.1039/c2jm35619h .
Li, G.; Zhang, H.; Fortin, D.; Fan, W.; Xia, H.; Zhao, Y . A composite material with room temperature shape processability and optical repair . J. Mater. Chem. C , 2016 . 4 5932 -5939. .
Peng, B. G.; Yang, Y. C.; Ju, T. X.; Cavicchi, K. A . Fused filament fabrication 4D printing of a highly extensible, self-healing, shape memory elastomer based on thermoplastic polymer blends . ACS Appl. Mater. Interfaces , 2021 . 13 12777 -12788 . DOI:10.1021/acsami.0c18618http://doi.org/10.1021/acsami.0c18618 .
Pantoja, M.; Jian, P.-Z.; Cakmak, M.; Cavicchi, K. A . Shape memory properties of polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene (SEBS) ABA triblock copolymer thermoplastic elastomers . ACS Appl. Polym. Mater. , 2019 . 1 414 -424 . DOI:10.1021/acsapm.8b00139http://doi.org/10.1021/acsapm.8b00139 .
Wu, T. T.; Hu, Y. X.; Rong, H. Q.; Wang, C. H . SEBS-based composite phase change material with thermal shape memory for thermal management applications . Energy , 2021 . 221 119900 DOI:10.1016/j.energy.2021.119900http://doi.org/10.1016/j.energy.2021.119900 .
Suchao-in, K.; Chirachanchai, S . "Grafting to" as a novel and simple approach for triple-shape memory polymers . ACS Appl. Mater. Interfaces , 2013 . 5 6850 -6853 . DOI:10.1021/am402214jhttp://doi.org/10.1021/am402214j .
Dirand, M.; Bouroukba, M.; Chevallier, V.; Petitjean, D.; Behar, E.; Ruffier-Meray, V . Normal alkanes, multialkane synthetic model mixtures, and real petroleum waxes: crystallographic structures, thermodynamic properties, and crystallization . J. Chem. Eng. Data , 2002 . 47 115 -143 . DOI:10.1021/je0100084http://doi.org/10.1021/je0100084 .
Guo, X. H.; Pethica, B. A.; Huang, J. S.; Prud'homme, R. K.; Adamson, D. H.; Fetters, L. J . Crystallization of mixed paraffin from model waxy oils and the influence of micro-crystalline poly(ethylene-butene) random copolymers . Energy Fuels , 2004 . 18 930 -937 . DOI:10.1021/ef034098phttp://doi.org/10.1021/ef034098p .
Rhodes, F. H.; Mason, C. W.; Sutton, W. R . Crystallization of paraffin wax . Ind. Eng. Chem. , 1927 . 19 935 -938 . DOI:10.1021/ie50212a028http://doi.org/10.1021/ie50212a028 .
Marie, E.; Chevalier, Y.; Eydoux, F.; Germanaud, L.; Flores, P . Control of n-alkanes crystallization by ethylene-vinyl acetate copolymers . J. Colloid Interface Sci. , 2005 . 290 406 -418 . DOI:10.1016/j.jcis.2005.04.054http://doi.org/10.1016/j.jcis.2005.04.054 .
Sahai, M.; Kumar, A.; Kumar, S . Crystal structure of fractionally crystallized waxes isolated from crude oil . J. Appl. Crystallogr. , 2017 . 50 639 -642 . DOI:10.1107/S1600576717000711http://doi.org/10.1107/S1600576717000711 .
Radulescu, A.; Schwahn, D.; Richter, D.; Fetters, L. J . Co-crystallization of poly(ethylene-butene) copolymers and paraffin molecules in decane studied with small-angle neutron scattering . J. Appl. Crystallogr. , 2003 . 36 995 -999 . DOI:10.1107/S0021889803008525http://doi.org/10.1107/S0021889803008525 .
Schwahn, D.; Richter, D.; Lin, M.; Fetters, L. J . Cocrystallization of a poly(ethylene-butene) random copolymer with C-24 in n-decane . Macromolecules , 2002 . 35 3762 -3768 . DOI:10.1021/ma0120456http://doi.org/10.1021/ma0120456 .
Zhou, T.; Zhang, A.; Zhao, C.; Liang, H.; Wu, Z.; Xia, J . Molecular chain movements and transitions of SEBS above room temperature studied by moving-window two-dimensional correlation infrared spectroscopy . Macromolecules , 2007 . 40 9009 -9017 . DOI:10.1021/ma071630phttp://doi.org/10.1021/ma071630p .
Richards, R. B . Oriented overgrowth on cold-drawn polymers . J. Polym. Sci. , 1951 . 6 397 -402 . DOI:10.1002/pol.1951.120060402http://doi.org/10.1002/pol.1951.120060402 .
Willems, J.; Willems, I . Oriented overgrowth of paraffin wax crystals on spherulites of polyethylene . Nature , 1956 . 178 429 -430 . DOI:10.1038/178429a0http://doi.org/10.1038/178429a0 .
0
浏览量
10
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构