a.School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
b.Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
wuqingy5@mail.sysu.edu.cn
Scan for full text
Jian-Chen Han, Shao-Fei Wang, Ran Deng, 等. Polydopamine/Imogolite Nanotubes (PDA/INTs) Interlayer Modulated Thin Film Composite Forward Osmosis Membrane for Minimizing Internal Concentration Polarization[J]. Chinese Journal of Polymer Science, 2022,40(10):1233-1241.
Jian-Chen Han, Shao-Fei Wang, Ran Deng, et al. Polydopamine/Imogolite Nanotubes (PDA/INTs) Interlayer Modulated Thin Film Composite Forward Osmosis Membrane for Minimizing Internal Concentration Polarization[J]. Chinese Journal of Polymer Science, 2022,40(10):1233-1241.
Jian-Chen Han, Shao-Fei Wang, Ran Deng, 等. Polydopamine/Imogolite Nanotubes (PDA/INTs) Interlayer Modulated Thin Film Composite Forward Osmosis Membrane for Minimizing Internal Concentration Polarization[J]. Chinese Journal of Polymer Science, 2022,40(10):1233-1241. DOI: 10.1007/s10118-022-2776-3.
Jian-Chen Han, Shao-Fei Wang, Ran Deng, et al. Polydopamine/Imogolite Nanotubes (PDA/INTs) Interlayer Modulated Thin Film Composite Forward Osmosis Membrane for Minimizing Internal Concentration Polarization[J]. Chinese Journal of Polymer Science, 2022,40(10):1233-1241. DOI: 10.1007/s10118-022-2776-3.
A hydrophilic interlayer composed of imogolite nanotubes (INTs) and polydopamine (PDA) can effectively alleviate the internal concentration polarization (ICP) effect and improve the performance of thin film nanocomposite (TFN) forward osmosis (FO) membrane.
Forward osmosis (FO) as an energy-saving membrane process has attracted much attention in food concentration, water treatment, and desalination. Thin film composite (TFC) membrane is the most popular FO membrane, but it suffers from the internal concentration polarization (ICP), which significantly limits the water flux and FO efficiency. In this report, we demonstrate a novel and high-performing thin film nanocomposite (TFN) membrane that employs a hydrophilic interlayer composed of imogolite nanotubes (INTs) and polydopamine (PDA). The INTs can be adhered to the porous substrate by the self-polymerization of PDA, and the as-prepared PDA/INTs interlayer displays a nano-structured network with outstanding hydrophilicity. The detailed investigation was conducted to understand the relationship between the structure and property of the PDA/INTs interlayer and the morphology and performance of the TFN membrane. The TFN membrane with the PDA/INTs interlayer performs a thinner and smoother polyamide selective layer. Correspondingly, the TFN membrane shows a water flux of 18.38 L·m,−2,·h,−1, which is 2.18 times of the pristine TFC membrane. Moreover, the TFN membrane has a minimized structural parameter (577 μm), almost a half of that of the pristine one (949 μm). It reveals that the ICP effect of TFC membrane can be effectively alleviated by using a hydrophilic PDA/INTs interlayer. This TFN membrane with a satisfactory water permeability is promising in terms of future applications.
InterlayerForward osmosisInternal concentration polarizationNanotubeThin film composite membrane
Qasim, M.; Badrelzaman, M.; Darwish, N. N.; Darwish, N. A.; Hilal, N . Reverse osmosis desalination: a state-of-the-art review . Desalination , 2019 . 459 59 -104 . DOI:10.1016/j.desal.2019.02.008http://doi.org/10.1016/j.desal.2019.02.008 .
Cao, S.; Rathi, P.; Wu, X.; Ghim, D.; Jun, Y. S.; Singamaneni, S . Cellulose nanomaterials in interfacial evaporators for desalination: a "natural" choice . Adv. Mater. , 2020 . e2000922 .
Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A. P.; Tong, T.; Warsinger, D. M.; Elimelech, M . Membrane distillation at the water-energy nexus: limits, opportunities, and challenges . Energy Environ. Sci. , 2018 . 11 1177 -1196 . DOI:10.1039/C8EE00291Fhttp://doi.org/10.1039/C8EE00291F .
Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N . Forward osmosis membranes and processes: a comprehensive review of research trends and future outlook . Desalination , 2020 . 485 114455 DOI:10.1016/j.desal.2020.114455http://doi.org/10.1016/j.desal.2020.114455 .
Lutchmiah, K.; Verliefde, A. R. D.; Roest, K.; Rietveld, L. C.; Cornelissen, E. R . Forward osmosis for application in wastewater treatment: a review . Water Res. , 2014 . 58 179 -197 . DOI:10.1016/j.watres.2014.03.045http://doi.org/10.1016/j.watres.2014.03.045 .
Cath, T. Y.; Childress, A. E.; Elimelech, M . Forward osmosis: principles, applications, and recent developments . J. Membr. Sci. , 2006 . 281 70 -87 . DOI:10.1016/j.memsci.2006.05.048http://doi.org/10.1016/j.memsci.2006.05.048 .
Rong, K.; Zhang, T. C . Forward osmosis: mass transmission coefficient-based models for evaluation of concentration polarization under different conditions . J. Environ. Eng. , 2018 . 144 (2 ):04017095 DOI:10.1061/(ASCE)EE.1943-7870.0001286http://doi.org/10.1061/(ASCE)EE.1943-7870.0001286 .
Wu, Q. Y.; Xing, X. Y.; Yu, Y.; Gu, L.; Xu, Z. K . Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis . Polymer , 2018 . 153 150 -160 . DOI:10.1016/j.polymer.2018.08.017http://doi.org/10.1016/j.polymer.2018.08.017 .
Lim, S.; Van Huy, T.; Akther, N.; Phuntsho, S.; Shon, H. K . Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications . J. Membr. Sci. , 2019 . 586 281 -291 . DOI:10.1016/j.memsci.2019.05.064http://doi.org/10.1016/j.memsci.2019.05.064 .
Obaid, M.; Kang, Y.; Wang, S.; Yoon, M. H.; Kim, C. M.; Song, J. H.; Kim, I. S . Fabrication of highly permeable thin-film nanocomposite forward osmosis membranes via the design of novel freestanding robust nanofiber substrates . J. Mater. Chem. A , 2018 . 6 11700 -11713 . DOI:10.1039/C7TA11320Jhttp://doi.org/10.1039/C7TA11320J .
Hoover, L. A.; Schiffman, J. D.; Elimelech, M . Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis . Desalination , 2013 . 308 73 -81 . DOI:10.1016/j.desal.2012.07.019http://doi.org/10.1016/j.desal.2012.07.019 .
Huang, L.; McCutcheon, J.R . Impact of support layer pore size on performance of thin film composite membranes for forward osmosis . J. Membr. Sci. , 2015 . 483 25 -33 . DOI:10.1016/j.memsci.2015.01.025http://doi.org/10.1016/j.memsci.2015.01.025 .
Song, X.; Zhang, Y.; Abdel-Ghafar, H. M.; Abdel-Aal, E. S . A.; Huang, M.; Gul, S.; Jiang, H. Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis . Chem. Eng. J. , 2021 . 412 128607 DOI:10.1016/j.cej.2021.128607http://doi.org/10.1016/j.cej.2021.128607 .
Wang, S. F.; Yu, Y.; Wu, Q. Y. High-performance thin film composite forward osmosis membrane with polydopamine/polyethyleneimine (PDA/PEI) codeposition interlayer. Acta Polymerica Sinica (in Chinese) 2020, 51, 385-392.
Yu, F.; Shi, H.; Shi, J.; Teng, K.; Xu, Z.; Qian, X . High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer . J. Membr. Sci. , 2020 . 616 118611 DOI:10.1016/j.memsci.2020.118611http://doi.org/10.1016/j.memsci.2020.118611 .
Zhou, Z.; Hu, Y.; Boo, C.; Liu, Z.; Li, J.; Deng, L.; An, X . High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer . Environ. Sci. Technol. Lett. , 2018 . 5 243 -248 . DOI:10.1021/acs.estlett.8b00169http://doi.org/10.1021/acs.estlett.8b00169 .
Yang, Z.; Wang, F.; Guo, H.; Peng, L. E.; Ma, X. H.; Song, X. X.; Wang, Z.; Tang, C. Y . Mechanistic insights into the role of polydopamine interlayer toward improved separation performance of polyamide nanofiltration membranes . Environ. Sci. Technol. , 2020 . 54 11611 -11621 . DOI:10.1021/acs.est.0c03589http://doi.org/10.1021/acs.est.0c03589 .
Zhao, X.; Li, J.; Liu, C . A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance . Desalination , 2017 . 413 176 -183 . DOI:10.1016/j.desal.2017.03.021http://doi.org/10.1016/j.desal.2017.03.021 .
Wang, Y.; Li, X.; Zhao, S.; Fang, Z.; Ng, D.; Xie, C.; Wang, H.; Xie, Z . Thin-film composite membrane with interlayer decorated metal-organic framework UiO-66 toward enhanced forward osmosis performance . Ind. Eng. Chem. Res. , 2019 . 58 195 -206 . DOI:10.1021/acs.iecr.8b04968http://doi.org/10.1021/acs.iecr.8b04968 .
Shah, A. A.; Cho, Y. H.; Choi, H.; Nam, S. E.; Kim, J . F.; Kim, Y.; Park, H. Facile integration of halloysite nanotubes with bioadhesive as highly permeable interlayer in forward osmosis membranes . J. Ind. Eng. Chem. , 2019 . 73 276 -285 . DOI:10.1016/j.jiec.2019.01.039http://doi.org/10.1016/j.jiec.2019.01.039 .
Pan, Y. H.; Zhao, Q. Y.; Gu, L.; Wu, Q. Y . Thin film nanocomposite membranes based on imologite nanotubes blended substrates for forward osmosis desalination . Desalination , 2017 . 421 160 -168 . DOI:10.1016/j.desal.2017.04.019http://doi.org/10.1016/j.desal.2017.04.019 .
Zheng, W.; Fan, H.; Wang, L.; Jin, Z . Oxidative self-polymerization of dopamine in an acidic environment . Langmuir , 2015 . 31 11671 -11677 . DOI:10.1021/acs.langmuir.5b02757http://doi.org/10.1021/acs.langmuir.5b02757 .
Abu Tarboush, B. J.; Rana, D.; Matsuura, T.; Arafat, H. A.; Narbaitz, R. M . Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules . J. Membr. Sci. , 2008 . 325 166 -175 . DOI:10.1016/j.memsci.2008.07.037http://doi.org/10.1016/j.memsci.2008.07.037 .
Zhang, C.; Xiang, L.; Zhang, J.; Liu, C.; Wang, Z.; Zeng, H.; Xu, Z. K . Revisiting the adhesion mechanism of musselinspired chemistry . Chem. Sci. , 2022 . 13 169 .
Chen, G.; Liu, R.; Shon, H. K.; Wang, Y.; Song, J.; Li, X. M.; He, T . Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater . Desalination , 2017 . 405 76 -84 . DOI:10.1016/j.desal.2016.12.004http://doi.org/10.1016/j.desal.2016.12.004 .
Tan, Z.; Chen, S.; Peng, X.; Zhang, L.; Gao, C . Polyamide membranes with nanoscale Turing structures for water purification . Science , 2018 . 360 518 -521 . DOI:10.1126/science.aar6308http://doi.org/10.1126/science.aar6308 .
Vyas, B. B.; Ray, P . Preparation of nanofiltration membranes and relating surface chemistry with potential and topography: application in separation and desalting of amino acids . Desalination , 2015 . 362 104 -116 . DOI:10.1016/j.desal.2015.02.013http://doi.org/10.1016/j.desal.2015.02.013 .
Freger, V . Kinetics of film formation by interfacial polycondensation . Langmuir , 2005 . 21 1884 -1894 . DOI:10.1021/la048085vhttp://doi.org/10.1021/la048085v .
Bao, X.; Wu, Q.; Tian, J.; Shi, W.; Wang, W.; Zhang, Z.; Zhang, R.; Zhang, B.; Guo, Y.; Shu, S.; Cui, F . Fouling mechanism of forward osmosis membrane in domestic wastewater concentration: role of substrate structures . Chem. Eng. J. , 2019 . 370 262 -273 . DOI:10.1016/j.cej.2019.03.174http://doi.org/10.1016/j.cej.2019.03.174 .
Freger, V . Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization . Langmuir , 2003 . 19 4791 -4797 . DOI:10.1021/la020920qhttp://doi.org/10.1021/la020920q .
Tang, C. Y.; She, Q.; Lay, W. C. L.; Wang, R.; Fane, A. G . Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration . J. Membr. Sci. , 2010 . 354 123 -133 . DOI:10.1016/j.memsci.2010.02.059http://doi.org/10.1016/j.memsci.2010.02.059 .
Zhao, S.; Zou, L.; Tang, C. Y.; Mulcahy, D . Recent developments in forward osmosis: opportunities and challenges . J. Membr. Sci. , 2012 . 396 1 -21 . DOI:10.1016/j.memsci.2011.12.023http://doi.org/10.1016/j.memsci.2011.12.023 .
Darabi, R. R.; Peyravi, M.; Jahanshahi, M.; Amiri, A. A. Q . Decreasing ICP of forward osmosis (TFN-FO) membrane through modifying PES-Fe3O4 nanocomposite substrate . Korean J. Chem. Eng. , 2017 . 34 2311 -2324 . DOI:10.1007/s11814-017-0086-1http://doi.org/10.1007/s11814-017-0086-1 .
Li, W.; Gao, Y.; Tang, C. Y . Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: model development and theoretical analysis with FEM . J. Membr. Sci. , 2011 . 379 307 -321 . DOI:10.1016/j.memsci.2011.05.074http://doi.org/10.1016/j.memsci.2011.05.074 .
Yang, Z.; Ma, X. H.; Tang, C. Y . Recent development of novel membranes for desalination . Desalination , 2018 . 434 37 -59 . DOI:10.1016/j.desal.2017.11.046http://doi.org/10.1016/j.desal.2017.11.046 .
0
浏览量
8
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构