a.Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
b.Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
c.Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
jun-xu@mail.tsinghua.edu.cn
Scan for full text
New Kinetics Equation for Stress Relaxation of Semi-crystalline Polymers below Glass Transition Temperature[J]. 高分子科学(英文版), 2022,40(12):1662-1669.
Cheng Zhang, Li-Hai Cai, Bao-Hua Guo, et al. New Kinetics Equation for Stress Relaxation of Semi-crystalline Polymers below Glass Transition Temperature[J]. Chinese Journal of Polymer Science, 2022,40(12):1662-1669.
New Kinetics Equation for Stress Relaxation of Semi-crystalline Polymers below Glass Transition Temperature[J]. 高分子科学(英文版), 2022,40(12):1662-1669. DOI: 10.1007/s10118-022-2749-6.
Cheng Zhang, Li-Hai Cai, Bao-Hua Guo, et al. New Kinetics Equation for Stress Relaxation of Semi-crystalline Polymers below Glass Transition Temperature[J]. Chinese Journal of Polymer Science, 2022,40(12):1662-1669. DOI: 10.1007/s10118-022-2749-6.
A new kinetics equation is proposed to quantitatively describe the two-step mechanism of stress relaxation in Nylon 1010, which consists of stress biased Eyring-like local activation at short time scale and a cooperative excitation process with the excitation size proportional to the reciprocal of stress at long time scale.
The stress relaxation of semi-crystalline nylon 1010 cannot be fitted by the Kohlrausch-Williams-Watts formula when the experiments were performed at pre-yielding regime below the glass transition temperature. We study this problem and identify the two-step mechanism of stress relaxation. At short time scale, relaxation is fast, dominated by stress biased thermal fluctuation with a fixed short-range length scale (activation volume). At long time scale, relaxation is slow due to the emergence of a cooperative long-range length scale determined by the stress fluctuation. The cooperative length scale is proportional to the reciprocal of stress and the amplitude of stress fluctuation is the product of stress and activation volume. Based on this two-step mechanism, we propose a new kinetics equation to capture the stress relaxation effectively, where the short time relaxation is described by an Eyring-like local activation and the long-time relaxation is captured by a cooperative excitation process resorting to an extension from the random first order transition theory. Our equation fits the experimental data well and can serve as a model to guide the related experiments of relaxation processes in crystalline solids.
Stress relaxationSemi-crystalline polymersKohlrausch-Williams-Watts (KWW) equationRandom first order transition (RFOT) theory
Ngai, K. Relaxation and diffusion in complex systems. Springer Science & Business Media: 2011.
Ediger, M.; Harrowell, P . Perspective: supercooled liquids and glasses . J. Chem. Phys. , 2012 . 137 080901 DOI:10.1063/1.4747326http://doi.org/10.1063/1.4747326 .
McKenna, G. B . Glass transition: challenges of extreme time scales and other interesting problem . Rubber Chem. Technol. , 2020 . 93 79 -120 . DOI:10.5254/rct.20.80376http://doi.org/10.5254/rct.20.80376 .
Arzhakov, M. Relaxation in Physical and Mechanical Behavior of Polymers. CRC Press: 2019.
Cavagna, A . Supercooled liquids for pedestrians . Phys. Rep. , 2009 . 476 51 -124 . DOI:10.1016/j.physrep.2009.03.003http://doi.org/10.1016/j.physrep.2009.03.003 .
Ward, I. M.; Sweeney, J. Mechanical properties of solid polymers. John Wiley & Sons: 2012.
Zuo, F.; Keum, J. K.; Chen, X.; Hsiao, B. S.; Chen, H.; Lai, S . Y.; Wevers, R.; Li, J. The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene . Polymer , 2007 . 48 6867 -6880 . DOI:10.1016/j.polymer.2007.08.065http://doi.org/10.1016/j.polymer.2007.08.065 .
Kamal, T.; Shin, T. J.; Park, S. Y . Uniaxial tensile deformation of poly(ε-caprolactone) studied with SAXS and WAXS techniques using synchrotron radiation . Macromolecules , 2012 . 45 8752 -8759 . DOI:10.1021/ma301714fhttp://doi.org/10.1021/ma301714f .
Jiang, Z.; Tang, Y.; Rieger, J.; Enderle, H. F.; Lilge, D.; Roth, S . V.; Gehrke, R.; Wu, Z.; Li, Z.; Men, Y. Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: scanning synchrotron small-and wide-angle X-ray scattering studies . Polymer , 2009 . 50 4101 -4111 . DOI:10.1016/j.polymer.2009.06.063http://doi.org/10.1016/j.polymer.2009.06.063 .
Zhang, Y.; Jar, P. Y . B.; Xue, S.; Li, L. Quantification of strain-induced damage in semi-crystalline polymers: a review . J. Mater. Sci. , 2019 . 54 62 -82 . DOI:10.1007/s10853-018-2859-2http://doi.org/10.1007/s10853-018-2859-2 .
Pawlak, A.; Galeski, A.; Rozanski, A . Cavitation during deformation of semicrystalline polymers . Prog. Polym. Sci. , 2014 . 39 921 -958 . DOI:10.1016/j.progpolymsci.2013.10.007http://doi.org/10.1016/j.progpolymsci.2013.10.007 .
Wiedersich, J.; Blochowicz, T.; Benkhof, S.; Kudlik, A.; Surovtsev, N.; Tschirwitz, C.; Novikov, V.; Rössler, E . Fast and slow relaxation processes in glasses . J. Phys.: Condens. Matter , 1999 . 11 A147 DOI:10.1088/0953-8984/11/10A/010http://doi.org/10.1088/0953-8984/11/10A/010 .
Binder, K.; Kob, W. Glassy materials and disordered solids: an introduction to their statistical mechanics. World Scientific: 2011.
Ngai, K. L.; Roland, C. M . Intermolecular cooperativity and the temperature dependence of segmental relaxation in semicrystalline polymers . Macromolecules , 1993 . 26 2688 -2690 . DOI:10.1021/ma00063a008http://doi.org/10.1021/ma00063a008 .
Pieruccini, M.; Ezquerra, T. A. In Segmental relaxation in semicrystalline polymers: a mean-field model for the distribution of relaxation times in confined regimes, pp 163−171.
Bending, B.; Christison, K.; Ricci, J.; Ediger, M. D . Measurement of segmental mobility during constant strain rate deformation of a poly(methyl methacrylate) glass . Macromolecules , 2013 . 47 429 -442 . DOI:10.1021/ma402275rhttp://doi.org/10.1021/ma402275r .
Lee, H. N.; Paeng, K.; Swallen, S. F.; Ediger, M. D.; Stamm, R. A.; Medvedev, G. A.; Caruthers, J. M . Molecular mobility of poly(methyl methacrylate) glass during uniaxial tensile creep deformation . J. Polym. Sci., Part B: Polym. Phys. , 2010 . 47 1713 -1727 . DOI:10.1002/polb.21774http://doi.org/10.1002/polb.21774 .
Lee, H. N.; Riggleman, R. A.; de Pablo, J. J.; Ediger, M . Deformation-induced mobility in polymer glasses during multistep creep experiments and simulations . Macromolecules , 2009 . 42 4328 -4336 . DOI:10.1021/ma900394nhttp://doi.org/10.1021/ma900394n .
Lee, H. N.; Paeng, K.; Swallen, S. F.; Ediger, M . Direct measurement of molecular mobility in actively deformed polymer glasses . Science , 2009 . 323 231 -234 . DOI:10.1126/science.1165995http://doi.org/10.1126/science.1165995 .
Cai, L.; Guo, B.; Zhang, C.; Xu, J.; Huang, Z . Long-term stress relaxation prediction for nylon 1010 using time-temperature superposition method . Chem. J. Chinese Univ. , 2019 . 40 832 -840. .
Cai, L.; Zhang, C.; Guo, B.; Xu, J.; Huang, Z . Stress relaxation behavior of nylon 1010 . Acta Polymerica Sinica (in Chinese) , 2016 . 382 -390 . DOI:10.11777/j.issn1000-3304.2016.15274http://doi.org/10.11777/j.issn1000-3304.2016.15274 .
Wilding, M.; Ward, I . Creep and stress-relaxation in ultra-high modulus linear polyethylene . J. Mater. Sci. , 1984 . 19 629 -636 . DOI:10.1007/BF02403251http://doi.org/10.1007/BF02403251 .
Sweeney, J.; Ward, I . A unified model of stress relaxation and creep applied to oriented polyethylene . J. Mater. Sci. , 1990 . 25 697 -705 . DOI:10.1007/BF00714097http://doi.org/10.1007/BF00714097 .
André, J.; Cruz Pinto, J . Modeling nonlinear stress relaxation of polymers . Polym. Engin. Sci. , 2014 . 54 404 -416 . DOI:10.1002/pen.23581http://doi.org/10.1002/pen.23581 .
Kohlrausch, R . Theorie des elektrischen Rückstandes in der Leidener Flasche . Annalen der Physik , 1854 . 167 179 -214 . DOI:10.1002/andp.18541670203http://doi.org/10.1002/andp.18541670203 .
Williams, G.; Watts, D. C . Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function . Trans. Faraday Soc. , 1970 . 66 80 -85 . DOI:10.1039/tf9706600080http://doi.org/10.1039/tf9706600080 .
Berthier, L.; Biroli, G.; Bouchaud, J. P.; Cipelletti, L.; Van Saarloos, W. Dynamical heterogeneities in glasses, colloids, and granular media. Oxford University Press: 2011.
Bouchaud, J. P.; Georges, A . Anomalous diffusion in disordered media-statistical mechanisms, models and physical applications . Phys. Rep.-Rev. Sec. Phys. Lett. , 1990 . 195 127 -293. .
Phillips, J . Stretched exponential relaxation in molecular and electronic glasses . Rep. Prog. Phys. , 1996 . 59 1133 DOI:10.1088/0034-4885/59/9/003http://doi.org/10.1088/0034-4885/59/9/003 .
Elton, D. C. Stretched exponential relaxation. arXiv preprint arXiv:1808.00881 2018.
Schiavi, A.; Prato, A . Evidences of non-linear short-term stress relaxation in polymers . Polym. Test. , 2017 . 59 220 -229 . DOI:10.1016/j.polymertesting.2017.01.030http://doi.org/10.1016/j.polymertesting.2017.01.030 .
Qiao, J.; Wang, Y. J.; Zhao, L.; Dai, L.; Crespo, D.; Pelletier, J. M.; Keer, L. M.; Yao, Y . Transition from stress-driven to thermally activated stress relaxation in metallic glasses . Phys. Revi. B , 2016 . 94 104203 DOI:10.1103/PhysRevB.94.104203http://doi.org/10.1103/PhysRevB.94.104203 .
Song, L.; Xu, W.; Huo, J.; Wang, J . Q.; Wang, X.; Li, R. Two-step relaxations in metallic glasses during isothermal annealing . Intermetallics , 2018 . 93 101 -105 . DOI:10.1016/j.intermet.2017.11.016http://doi.org/10.1016/j.intermet.2017.11.016 .
Liu, C.; Pineda, E.; Crespo, D.; Qiao, J.; Evenson, Z.; Ruta, B . Sub-Tg relaxation times of the α process in metallic glasses . J. Non·Cryst. Solids , 2017 . 471 322 -327. .
Jiao, W.; Sun, B.; Wen, P.; Bai, H.; Kong, Q.; Wang, W . Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses . Appl. Phys. Lett. , 2013 . 103 081904 DOI:10.1063/1.4819393http://doi.org/10.1063/1.4819393 .
Zhao, L.; Xue, R.; Li, Y.; Wang, W.; Bai, H . Revealing localized plastic flow in apparent elastic region before yielding in metallic glasses . J. Appl. Phys. , 2015 . 118 244901 DOI:10.1063/1.4938567http://doi.org/10.1063/1.4938567 .
Shi, B.; Luan, S.; Jin, P . Crossover from free propagation to cooperative motions of shear bands and its effect on serrated flow in metallic glass . J. Non·Cryst. Solids , 2018 . 482 126 -131. .
Cangialosi, D.; Boucher, V . M.; Alegría, A.; Colmenero, J. Direct evidence of two equilibration mechanisms in glassy polymers . Phys. Rev. Lett. , 2013 . 111 095701 DOI:10.1103/PhysRevLett.111.095701http://doi.org/10.1103/PhysRevLett.111.095701 .
Kirkpatrick, T.; Wolynes, P . Connections between some kinetic and equilibrium theories of the glass transition . Phys. Rev. A , 1987 . 35 3072 DOI:10.1103/PhysRevA.35.3072http://doi.org/10.1103/PhysRevA.35.3072 .
Kirkpatrick, T. R.; Thirumalai, D . p-Spin-interaction spin-glass models: connections with the structural glass problem . Phys. Rev. B , 1987 . 36 5388 DOI:10.1103/PhysRevB.36.5388http://doi.org/10.1103/PhysRevB.36.5388 .
Kirkpatrick, T.; Wolynes, P . Stable and metastable states in mean-field Potts and structural glasses . Phys. Rev. B , 1987 . 36 8552 DOI:10.1103/PhysRevB.36.8552http://doi.org/10.1103/PhysRevB.36.8552 .
Biroli, G.; Bouchaud, J. P . The random first-order transition theory of glasses: a critical assessment . Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications , 2012 . 31 -113. .
Bouchaud, J. P. Glassy dynamics: mean-fieldlandscape'pictures versus growing length scale scenarii. arXiv preprint cond-mat/0408617 2004.
Yaida, S.; Berthier, L.; Charbonneau, P.; Tarjus, G . Point-to-set lengths, local structure, and glassiness . Phys. Rev. E , 2016 . 94 032605 DOI:10.1103/PhysRevE.94.032605http://doi.org/10.1103/PhysRevE.94.032605 .
Wu, Y.; Wang, B.; Hu, Y.; Lu, Z.; Li, Y.; Shang, B.; Wang, W.; Bai, H.; Guan, P . The critical strain-A crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass . Scripta Mater. , 2017 . 134 75 -79 . DOI:10.1016/j.scriptamat.2017.02.048http://doi.org/10.1016/j.scriptamat.2017.02.048 .
Qiao, J.; Wang, Q.; Pelletier, J.; Kato, H.; Casalini, R.; Crespo, D.; Pineda, E.; Yao, Y.; Yang, Y. Structural heterogeneities and mechanical behavior of amorphous alloys. Prog. Mater Sci. 2019.
Sun, B.; Hu, Y.; Wang, D.; Zhu, Z.; Wen, P.; Wang, W.; Liu, C.; Yang, Y . Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses . Acta Mater. , 2016 . 121 266 -276 . DOI:10.1016/j.actamat.2016.09.014http://doi.org/10.1016/j.actamat.2016.09.014 .
Kawasaki, Y.; Watanabe, H.; Uneyama, T . A note for Kohlrausch-Williams-Watts relaxation function . Nihon Reoroji Gakkaishi , 2011 . 39 127 -131 . DOI:10.1678/rheology.39.127http://doi.org/10.1678/rheology.39.127 .
Johnston, D . Stretched exponential relaxation arising from a continuous sum of exponential decays . Phys. Rev. B , 2006 . 74 184430 DOI:10.1103/PhysRevB.74.184430http://doi.org/10.1103/PhysRevB.74.184430 .
Jurlewicz, A.; Weron, K . A relationship between asymmetric Lévy-stable distributions and the dielectric susceptibility . J. Stat. Phys. , 1993 . 73 69 -81 . DOI:10.1007/BF01052751http://doi.org/10.1007/BF01052751 .
Fancey, K. S . A mechanical model for creep, recovery and stress relaxation in polymeric materials . J. Mater. Sci. , 2005 . 40 4827 -4831 . DOI:10.1007/s10853-005-2020-xhttp://doi.org/10.1007/s10853-005-2020-x .
Qiao, J.; Wang, Y. J.; Pelletier, J. M.; Keer, L. M.; Fine, M. E.; Yao, Y . Characteristics of stress relaxation kinetics of La60Ni15Al25 bulk metallic glass . Acta Mater. , 2015 . 98 43 -50 . DOI:10.1016/j.actamat.2015.07.020http://doi.org/10.1016/j.actamat.2015.07.020 .
Qiao, J.; Wang, Q.; Crespo, D.; Yang, Y.; Pelletier, J. M . Amorphous physics and materials: secondary relaxation and dynamic heterogeneity in metallic glasses: a brief review . Chinese Phys. B , 2017 . 26 016402 DOI:10.1088/1674-1056/26/1/016402http://doi.org/10.1088/1674-1056/26/1/016402 .
Rubinstein, M.; Colby, R. H. Polymer physics. Oxford university press, New York: 2003 Vol. 23.
Guiu, F.; Pratt, P . Stress relaxation and the plastic deformation of solids . Physica Status Solidi B , 1964 . 6 111 -120 . DOI:10.1002/pssb.19640060108http://doi.org/10.1002/pssb.19640060108 .
Balasubramanian, N.; Li, J . The activation areas for creep deformation . J. Mater. Sci. , 1970 . 5 434 -444 . DOI:10.1007/BF00550006http://doi.org/10.1007/BF00550006 .
Brostow, W.; Corneliussen, R. D. Failure of plastics. Hanser Pub.: Distributed in the United States of America by Macmillan Pub.: 1986.
Dyre, J. C.; Olsen, N. B.; Christensen, T . Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids . Phys. Rev. B Cond. Matter , 1996 . 53 2171 DOI:10.1103/PhysRevB.53.2171http://doi.org/10.1103/PhysRevB.53.2171 .
Gao, R.; Kuriyagawa, M.; Nitta, K . H.; He, X.; Liu, B. Structural Interpretation of Eyring Activation Parameters for Tensile Yielding Behavior of Isotactic Polypropylene Solids . J. Macromol. Sci. Part B , 2015 . 54 1196 -1210 . DOI:10.1080/00222348.2015.1079088http://doi.org/10.1080/00222348.2015.1079088 .
Eyring, H . Viscosity, plasticity, and diffusion as examples of absolute reaction rates . J. Chem. Phys. , 1936 . 4 283 -291 . DOI:10.1063/1.1749836http://doi.org/10.1063/1.1749836 .
Qiao, J.; Pelletier, J. M . Dynamic mechanical relaxation in bulk metallic glasses: a review . J. Mater. Sci. Technol. , 2014 . 30 523 -545 . DOI:10.1016/j.jmst.2014.04.018http://doi.org/10.1016/j.jmst.2014.04.018 .
Yu, H. B.; Wang, W. H.; Bai, H. Y.; Samwer, K . The β-relaxation in metallic glasses . Nat. Sci. Rev. , 2014 . 1 429 -461 . DOI:10.1093/nsr/nwu018http://doi.org/10.1093/nsr/nwu018 .
Yu, H. B.; Richert, R.; Samwer, K . Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses . Sci. Adv. , 2017 . 3 e1701577 DOI:10.1126/sciadv.1701577http://doi.org/10.1126/sciadv.1701577 .
Wang, Z.; Sun, B.; Bai, H.; Wang, W . Evolution of hidden localized flow during glass-to-liquid transition in metallic glass . Nat. Commun. , 2014 . 5 5823 DOI:10.1038/ncomms6823http://doi.org/10.1038/ncomms6823 .
Lemaître, A . Tensorial analysis of Eshelby stresses in 3D supercooled liquids . J. Chem. Phys. , 2015 . 143 164515 DOI:10.1063/1.4933235http://doi.org/10.1063/1.4933235 .
Nicolas, A.; Ferrero, E . E.; Martens, K.; Barrat, J. L. Deformation and flow of amorphous solids: Insights from elastoplastic models . Rev. Mod. Phys. , 2018 . 90 045006 DOI:10.1103/RevModPhys.90.045006http://doi.org/10.1103/RevModPhys.90.045006 .
Xu, W. S.; Douglas, J. F.; Xia, W.; Xu. X. . Investigation of the temperature dependence of activation volume in glass-forming polymer melts under variable pressure conditions . Macromolecules , 2020 . 53 6828 -6481 . DOI:10.1021/acs.macromol.0c01268http://doi.org/10.1021/acs.macromol.0c01268 .
Xu, W. S.; Douglas, J. F.; Xia, W.; Xu. X. . Understanding activation volume in glass-forming polymer melts via generalized entropy theory . Macromolecules , 2020 . 53 7239 -7252 . DOI:10.1021/acs.macromol.0c01269http://doi.org/10.1021/acs.macromol.0c01269 .
0
浏览量
9
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构