1.State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
xblu@dlut.edu.cn
Scan for full text
Partners in Epoxide Copolymerization Catalysis: Approach to High Activity and Selectivity[J]. 高分子科学(英文版), 2022,40(11):1331-1348.
Xiao-Bing Lu, Bai-Hao Ren. Partners in Epoxide Copolymerization Catalysis: Approach to High Activity and Selectivity[J]. Chinese Journal of Polymer Science, 2022,40(11):1331-1348.
Partners in Epoxide Copolymerization Catalysis: Approach to High Activity and Selectivity[J]. 高分子科学(英文版), 2022,40(11):1331-1348. DOI: 10.1007/s10118-022-2744-y.
Xiao-Bing Lu, Bai-Hao Ren. Partners in Epoxide Copolymerization Catalysis: Approach to High Activity and Selectivity[J]. Chinese Journal of Polymer Science, 2022,40(11):1331-1348. DOI: 10.1007/s10118-022-2744-y.
The unprecedented activities and selectivities were achieved in epoxide copolymerization reactions with CO,2, COS or anhydrides ,via, inter- or/and intra-molecular synergistic catalysis, affording the completely alternating copolymers with low dispersities. In some cases, highly enantioselective epoxide copolymerization was realized in a controllable manner to generate isotactic copolymers with main-chain chirality.
The ring-opening alternating copolymerization processes of epoxides with small-molecule monomers, such as carbon dioxide (CO,2,), carbonyl sulfide (COS) and cyclic anhydrides, are powerful strategies for preparing polymeric materials with degradable carbonate/ester/thiocarbonate main-chain backbone units. The catalysts selected for copolymerization processes play crucial roles in determining their reaction rates and productivities, as well as the selectivity, regio- and stereochemistry, compositions, and the molecular weights of their resultant copolymers. These processes often generate undesirable byproducts such as polyether or ether linkages dispersed randomly within the copolymer’s chain, and/or more thermodynamically stable cyclic products. In this account, we outline our efforts of over a dozen years on developing highly active well-defined metal catalysts based on inter- and intra-molecular synergistic strategies to selectively produce completely alternating copolymers from epoxides and various small-molecule monomers. Much attention was paid to the enantioselective resolution copolymerization processes of ,racemic, epoxides ,via, regioselective ring-openings, and the asymmetric copolymerization processes of ,meso,-epoxides with CO,2, COS, or cyclic anhydrides ,via, dissymmetrical ring-openings using multichiral catalytic systems, and affording isotactic copolymers with main-chain chirality. In addition, this account provides a thorough mechanistic understanding of the high reactivities, excellent selectivity, and unprecedented stereochemical controls of these copolymerization systems, mediated by inter- and intramolecular synergistic catalysis.
EpoxideRing-opening copolymerizationSynergistic catalysisCO2Stereochemistry control
Parker, R. E.; Isaacs, N. S . Mechanisms of epoxide reactions . Chem. Rev. , 1959 . 59 737 -799 . DOI:10.1021/cr50028a006http://doi.org/10.1021/cr50028a006 .
Childers, M. I.; Longo, J. M.; Van Zee, N. J.; LaPointe, A. M.; Coates, G. W . Stereoselective epoxide polymerization and copolymerization . Chem. Rev. , 2014 . 114 8129 -8152 . DOI:10.1021/cr400725xhttp://doi.org/10.1021/cr400725x .
Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F. R.; Frey, H . Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation . Chem. Rev. , 2016 . 116 2170 -2243 . DOI:10.1021/acs.chemrev.5b00441http://doi.org/10.1021/acs.chemrev.5b00441 .
Coates, G. W.; Moore, D. R . Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism . Angew. Chem. Int. Ed. , 2004 . 43 6618 -6639 . DOI:10.1002/anie.200460442http://doi.org/10.1002/anie.200460442 .
Darensbourg, D. J . Making plastics from carbon dioxide. Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2 . Chem. Rev. , 2007 . 107 2388 -2410 . DOI:10.1021/cr068363qhttp://doi.org/10.1021/cr068363q .
Qin, Y.; Wang, X . Carbon dioxide-based copolymers: environmental benefits of PPC, an industrially viable catalyst . Biotechnol. J. , 2010 . 5 1164 -1180 . DOI:10.1002/biot.201000134http://doi.org/10.1002/biot.201000134 .
Kember, M. R.; Buchard, A.; Williams, C. K . Catalysts for CO2/epoxide copolymerisation . Chem. Commun. , 2011 . 47 141 -163 . DOI:10.1039/C0CC02207Ahttp://doi.org/10.1039/C0CC02207A .
Lu, X. B.; Ren, W. M.; Wu, G. P . CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control . Acc. Chem. Res. , 2012 . 45 1721 -1735 . DOI:10.1021/ar300035zhttp://doi.org/10.1021/ar300035z .
Li, Y.; Zhang, Y. Y.; Hu, L. F.; Zhang, X. H.; Du, B. Y.; Xu, J. T . Carbon dioxide-based Copolymers with various architectures . Prog. Polym. Sci. , 2018 . 82 120 -157 . DOI:10.1016/j.progpolymsci.2018.02.001http://doi.org/10.1016/j.progpolymsci.2018.02.001 .
Xu, Y. H.; Lin, L. M.; Xiao, M.; Wang, S. J.; Smith, A. T.; Sun, L. Y.; Meng, Y. Z . Synthesis and properties of CO2-based plastics: environmentally-friendly, energy-saving and biomedical polymeric materials . Prog. Polym. Sci. , 2018 . 80 163 -182 . DOI:10.1016/j.progpolymsci.2018.01.006http://doi.org/10.1016/j.progpolymsci.2018.01.006 .
Luo, M.; Zhang, X. H.; Darensbourg, D. J . Poly(monothiocarbonate)s from the alternating and regioselective copolymerization of carbonyl sulfide with epoxides . Acc. Chem. Res. , 2016 . 49 2209 -2219 . DOI:10.1021/acs.accounts.6b00345http://doi.org/10.1021/acs.accounts.6b00345 .
Longo, J. M.; Sanford, M. J.; Coates, G. W . Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure-property relationships . Chem. Rev. , 2016 . 116 15167 -15197 . DOI:10.1021/acs.chemrev.6b00553http://doi.org/10.1021/acs.chemrev.6b00553 .
Inoue, S.; Koinuma, H.; Tsuruta, T . Copolymerization of carbon dioxide and epoxide . J. Polym. Sci., Part B: Polym. Phys. , 1969 . 7 287 -292. .
Lu, X. B.; Wang, Y . Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions . Angew. Chem. Int. Ed. , 2004 . 43 3574 -3577 . DOI:10.1002/anie.200453998http://doi.org/10.1002/anie.200453998 .
Qin, Z.; Thomas, C. M.; Lee, S.; Coates, G. W . Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis . Angew. Chem. Int. Ed. , 2003 . 42 5484 -5487 . DOI:10.1002/anie.200352605http://doi.org/10.1002/anie.200352605 .
Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R . Copolymerization of CO2 and epoxide catalyzed by metal Salen complexes . Acc. Chem. Res. , 2004 . 37 836 -844 . DOI:10.1021/ar030240uhttp://doi.org/10.1021/ar030240u .
Lu, X. B.; Shi, L.; Wang, Y. M.; Zhang, R.; Zhang, Y. J.; Peng, X. J.; Zhang, Z. C.; Li, B . Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control . J. Am. Chem. Soc. , 2006 . 128 1664 -1674 . DOI:10.1021/ja056383ohttp://doi.org/10.1021/ja056383o .
Ren, W. M.; Zhang, W. Z.; Lu, X. B . Highly regio- and stereo-selective copolymerization of CO2 with racemic propylene oxide catalyzed by unsymmetrical (S,S,S)-SalenCo(III) complexes . Sci. China Chem. , 2010 . 53 1646 -1652 . DOI:10.1007/s11426-010-4049-1http://doi.org/10.1007/s11426-010-4049-1 .
Shi, L.; Lu, X. B.; Zhang, R.; Peng, X. J.; Zhang, C. Q.; Li, J. F.; Peng, X. M . Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions . Macromolecules , 2006 . 39 5679 -5685 . DOI:10.1021/ma060290phttp://doi.org/10.1021/ma060290p .
Wu, G. P.; Ren, W. M.; Luo, Y.; Li, B.; Zhang, W. Z.; Lu, X. B . Enhanced asymmetric induction for the copolymerization of CO2 and cyclohexene oxide with unsymmetric enantiopure SalenCo(III) complexes: synthesis of crystalline CO2-based polycarbonate . J. Am. Chem. Soc. , 2012 . 134 5682 -5688 . DOI:10.1021/ja300667yhttp://doi.org/10.1021/ja300667y .
Li, W. B.; Ren, B. H.; Gu, G. G.; Lu, X. B . Controlled random terpolymerization of β-propiolactone, epoxides, and CO2 via regioselective lactone ring opening . CCS Chem. , 2021 . 3 917 -928. .
Ren, W. M.; Liu, Z. W.; Wen, Y. Q.; Zhang, R.; Lu, X. B . Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst . J. Am. Chem. Soc. , 2009 . 131 11509 -11518 . DOI:10.1021/ja9033999http://doi.org/10.1021/ja9033999 .
Niu, Y.; Li, H.; Chen, X.; Zhang, W, Zhuang, X.; Jing, X . Alternating copolymerization of carbon dioxide and propylene oxide catalyzed by cobalt schiff base complex . Macromol. Chem. Phys. , 2009 . 210 1224 -1229 . DOI:10.1002/macp.200900093http://doi.org/10.1002/macp.200900093 .
Qin, Y.; Wang, X.; Zhang, S.; Zhao, X.; Wang, F . Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regio-specific poly(propylene carbonate) with high molecular weight . J. Polym. Sci., Part A: Polym. Chem. , 2008 . 46 5959 -5967 . DOI:10.1002/pola.22911http://doi.org/10.1002/pola.22911 .
Li, B.; Wu, G. P.; Ren, W. M; Wang, Y. M.; Lu, X. B . Asymmetric, regio- and stereo-selective alternating copolymerization of CO2 and propylene oxide catalyzed by chiral chromium Salan complexes . J. Polym. Sci., Part A: Polym. Chem. , 2008 . 46 6102 -6113 . DOI:10.1002/pola.22922http://doi.org/10.1002/pola.22922 .
DiCiccio, A. M.; Longo, J. M.; Rodríguez-Calero, G. G.; Coates, G. W . Development of highly active and regioselective catalysts for the copolymerization of epoxides with cyclic anhydrides: an unanticipated effect of electronic variation . J. Am. Chem. Soc. , 2016 . 138 7107 -7113 . DOI:10.1021/jacs.6b03113http://doi.org/10.1021/jacs.6b03113 .
Van Zee, N. J.; Sanford, M. J.; Coates G. W . Electronic effects of aluminum complexes in the copolymerization of propylene oxide with tricyclic anhydrides: access to well-defined, functionalizable aliphatic polyesters . J. Am. Chem. Soc. , 2016 . 138 2755 -2761 . DOI:10.1021/jacs.5b12888http://doi.org/10.1021/jacs.5b12888 .
Luo, M.; Zhang, X. H.; Du, B. Y.; Wang, Q.; Fan, Z. Q . Regioselective and alternating copolymerization of carbonyl sulfide with racemic propylene oxide . Macromolecules , 2013 . 46 5899 -5904 . DOI:10.1021/ma401114mhttp://doi.org/10.1021/ma401114m .
Zhang, D.; Boopathi, S . K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. Metal-free alternating copolymerization of CO2 with epoxides: fulfilling “green” synthesis and activity . J. Am. Chem. Soc. , 2016 . 138 11117 -11120 . DOI:10.1021/jacs.6b06679http://doi.org/10.1021/jacs.6b06679 .
Yang, J. L.; Wu, H. L.; Li, Y.; Zhang, X. H.; Darensbourg, D. J . Perfectly alternating and regioselective copolymerization of carbonyl sulfide and epoxides by metal-free Lewis pairs . Angew. Chem., Int. Ed. , 2017 . 56 5774 -5779 . DOI:10.1002/anie.201701780http://doi.org/10.1002/anie.201701780 .
Zhang, J.; Wang, L.; Liu, S.; Kang, X.; Li, Z . A lewis pair as organocatalyst for one-pot synthesis of block copolymers from a mixture of epoxide, anhydride, and CO2 . Macromolecules , 2021 . 54 763 -772 . DOI:10.1021/acs.macromol.0c02647http://doi.org/10.1021/acs.macromol.0c02647 .
Ji, H. Y.; Wang, B.; Pan, L.; Li, Y. S . One-step access to sequence-controlled block copolymers by self-switchable organocatalytic multicomponent polymerization . Angew. Chem. Int. Ed. , 2018 . 57 16888 -16892 . DOI:10.1002/anie.201810083http://doi.org/10.1002/anie.201810083 .
Liu, S.; Bai, T.; Ni, K.; Chen, Y.; Zhao, J.; Ling, J.; Ye, X.; Zhang, G . Biased Lewis pair: a general catalytic approach to ether-ester block copolymers with unlimited ordering of sequences . Angew. Chem. Int. Ed. , 2019 . 58 15478 -15487 . DOI:10.1002/anie.201908904http://doi.org/10.1002/anie.201908904 .
Zhang, G. Z. Hybrid copolymerization. Acta Polymerica Sinica (in Chinese) 2018, 668−673.
Wang, Y.; Yang, J. L.; Zhang, C. J.; Zhang, X. H. Organocatalytic polymerization of sulfur-containing one-carbon monomer and epoxides. Acta Polymerica Sinica (in Chinese) 2020, 51, 1092−1103.
Wang, B.; Ji, H. Y.; Li, Y. S. Lewis pairs catalytic ring-opening polymerization of cyclic ester and ring-opening alternating copolymerization of cyclic anhydride/epoxide. Acta Polymerica Sinica (in Chinese) 2020, 51, 1104−1120.
Nakano, K.; Kamada, T.; Nozaki, K . Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm . Angew. Chem. Int. Ed. , 2006 . 45 7274 -7277 . DOI:10.1002/anie.200603132http://doi.org/10.1002/anie.200603132 .
Noh, E. K.; Na, S. J.; Sujith, S.; Kim, S. W.; Lee, B. Y . Two components in a molecule: highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization . J. Am. Chem. Soc. , 2007 . 129 8082 -8083 . DOI:10.1021/ja071290nhttp://doi.org/10.1021/ja071290n .
Sujith, S.; Min, K. K.; Seong, J. E.; Na, S. J.; Lee, B. Y . A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization . Angew. Chem. Int. Ed. , 2008 . 47 7306 -7309 . DOI:10.1002/anie.200801852http://doi.org/10.1002/anie.200801852 .
Liu, J.; Ren, W. M.; Liu, Y.; Lu, X. B. . Kinetic study on the coupling of CO2 and epoxides catalyzed by Co(III) complex with an inter- or intramolecular nucleophiliccocatalyst . Macromolecules , 2013 . 46 1343 -1349 . DOI:10.1021/ma302580shttp://doi.org/10.1021/ma302580s .
Wu, G. P.; Wei, S. H.; Lu, X. B.; Ren, W. M.; Darensbourg, D. J . Highly selective synthesis of CO2 copolymer from styrene oxide . Macromolecules , 2010 . 43 9202 -9204 . DOI:10.1021/ma1021456http://doi.org/10.1021/ma1021456 .
Wu, G. P.; Wei, S. H.; Ren, W. M.; Lu, X. B.; Xu, T. Q.; Darensbourg, D. J . Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(III)-based catalyst systems . J. Am. Chem. Soc. , 2011 . 133 15191 -15199 . DOI:10.1021/ja206425jhttp://doi.org/10.1021/ja206425j .
Wu, G. P.; Wei, S. H.; Ren, W. M.; Lu, X. B.; Li, B.; Zu, Y. P.; Darensbourg, D. J . Alternating copolymerization of CO2 and styrene oxide with Co(III)-based catalyst systems: differences between styrene oxide and propylene oxide in reactivity, polymer selectivity, and regioselective ring-opening . Energy Environ. Sci. , 2011 . 4 5084 -5092 . DOI:10.1039/c1ee02566jhttp://doi.org/10.1039/c1ee02566j .
Wang, L. Y.; Gu, G. G.; Ren, B. H.; Yue, T. J.; Lu, X. B.; Ren, W. M . Intramolecularly cooperative catalysis for copolymerization of cyclic thioanhydrides and epoxides: a dual activation strategy to well-defined polythioesters . ACS Catal. , 2020 . 10 6635 -6644 . DOI:10.1021/acscatal.0c00906http://doi.org/10.1021/acscatal.0c00906 .
Yue, T. J.; Bhat, G. A.; Zhang, W. J.; Ren, W. M.; Lu, X. B.; Darensbourg D. J . Facile synthesis of well-defined branched sulfur-containing copolymers: one-pot copolymerization of carbonyl sulfide and epoxide . Angew. Chem. Int. Ed. , 2020 . 59 13633 -13637 . DOI:10.1002/anie.202005806http://doi.org/10.1002/anie.202005806 .
Li, H.; Niu, Y . Alternating copolymerization of CO2 with propylene oxide and terpolymerization with aliphatic epoxides by bifunctional cobalt salen complex . Polym. J. , 2011 . 43 121 -125 . DOI:10.1038/pj.2010.112http://doi.org/10.1038/pj.2010.112 .
Sheng, X.; Wu, W.; Qin, Y.; Wang, X.; Wang, F . Efficient synthesis and stabilization of poly(propylene carbonate) from delicately designed bifunctional aluminum porphyrin complexes . Polym. Chem. , 2015 . 6 4719 -4724 . DOI:10.1039/C5PY00335Khttp://doi.org/10.1039/C5PY00335K .
Yang, G. W.; Zhang, Y. Y.; Xie, R.; Wu, G. P . Scalable bifunctional organoboron catalysts for copolymerization of CO2 and epoxides with unprecedented efficiency . J. Am. Chem. Soc. , 2020 . 142 12245 -12255 . DOI:10.1021/jacs.0c03651http://doi.org/10.1021/jacs.0c03651 .
Yang, G. W.; Zhang, Y. Y.; Wu, G. P . Modular organoboron catalysts enable transformations with unprecedented reactivity . Acc. Chem. Res. , 2021 . 54 4434 -4448 . DOI:10.1021/acs.accounts.1c00620http://doi.org/10.1021/acs.accounts.1c00620 .
Yang, G. W.; Xu, C. K.; Xie, R.; Zhang, Y. Y.; Zu, X. F.; Wu, G. P . Pinwheel-shaped tetranuclear organoboron catalysts for perfectly alternating copolymerization of CO2 and epichlorohydrin . J. Am. Chem. Soc. , 2021 . 143 3455 -3465 . DOI:10.1021/jacs.0c12425http://doi.org/10.1021/jacs.0c12425 .
Klaus, S.; Lehenmeier, M. W.; Anderson, C. E.; Rieger, B . Recent advances in CO2/epoxide copolymerization: new strategies and cooperative mechanisms . Coord. Chem. Rev. , 2011 . 255 1460 -1479 . DOI:10.1016/j.ccr.2010.12.002http://doi.org/10.1016/j.ccr.2010.12.002 .
Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W . Mechanism of the alternating copolymerization of epoxides and CO2 using β-diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment . J. Am. Chem. Soc. , 2003 . 125 11911 -11924 . DOI:10.1021/ja030085ehttp://doi.org/10.1021/ja030085e .
Nozaki, K.; Nakano, K.; Hiyama, T . Optically active polycarbonates: asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide . J. Am. Chem. Soc. , 1999 . 121 11008 -11009 . DOI:10.1021/ja992433bhttp://doi.org/10.1021/ja992433b .
Nakano, K.; Nozaki, K.; Hiyama, T . Asymmetric alternating copolymerization of cyclohexene oxide and CO2 with dimeric zinc complexes . J. Am. Chem. Soc. , 2003 . 125 5501 -5510 . DOI:10.1021/ja028666bhttp://doi.org/10.1021/ja028666b .
Xiao, Y.; Wang, Z.; Ding, K . Copolymerization of cyclohexene oxide with CO2 by using intramolecular dinuclear zinc catalysts . Chem. Eur. J. , 2005 . 11 3668 -3678 . DOI:10.1002/chem.200401159http://doi.org/10.1002/chem.200401159 .
Hua, Y. Z.; Lu, L. J.; Huang, P. J.; Wei D. H.; Tang, M. S.; Wang, M. C.; Chang, J . B . Chem. Eur. J. , 2014 . 20 12394 -12398 . DOI:10.1002/chem.201403088http://doi.org/10.1002/chem.201403088 .
Liu, Y.; Ren, W. M.; Liu, J.; Lu, X. B . Asymmetric copolymerization of CO2 with meso-epoxides mediated by dinuclear cobalt(III) complexes: unprecedented enantioselectivity and activity . Angew. Chem. Int. Ed. , 2013 . 52 11594 -11598 . DOI:10.1002/anie.201305154http://doi.org/10.1002/anie.201305154 .
Liu, Y.; Wang, M.; Ren, W. M.; He, K. K.; Xu, Y. C.; Liu, J.; Lu, X. B . Stereospecific CO2 copolymers from 3,5-dioxaepoxides: crystallization and functionallization . Macromolecules , 2014 . 47 1269 -1276 . DOI:10.1021/ma500112chttp://doi.org/10.1021/ma500112c .
Liu, Y.; Ren, W. M.; He, K. K.; Lu, X. B . Crystalline-gradient polycarbonates prepared from enantioselective terpolymerization of meso-epoxides with CO2 . Nat. Commun. , 2014 . 5 5687 DOI:10.1038/ncomms6687http://doi.org/10.1038/ncomms6687 .
Liu, Y.; Ren, W. M.; Wang, M.; Liu, C.; Lu, X. B . Crystalline stereocomplexed polycarbonates: hydrogen-bond-driven interlocked orderly assembly of the opposite enantiomers . Angew. Chem. Int. Ed. , 2015 . 54 2241 -2244 . DOI:10.1002/anie.201410692http://doi.org/10.1002/anie.201410692 .
Liu, Y.; Wang, M.; Wang, M.; Ren, W. M.; Xu, Y. C.; Liu, C.; Lu, X. B . Crystalline hetero-stereocomplexed polycarbonates produced from amorphous opposite enantiomers having different chemical structures . Angew. Chem. Int. Ed. , 2015 . 54 7042 -7046 . DOI:10.1002/anie.201501417http://doi.org/10.1002/anie.201501417 .
Lv, X. B. Stereoregular CO2 copolymers: from amorphous to crystalline materials. Acta Polymerica Sinica (in Chinese) 2016, 1166−1178.
Liu, Y.; Ren, W. M.; Liu, C.; Fu, S.; Wang, M.; He, K.-K.; Li, R. R.; Zhang, R.; Lu, X. B . Mechanistic understanding of dinuclear cobalt(III) complex mediated highly enantioselective copolymerization of meso-epoxides with CO2 . Macromolecules , 2014 . 47 7775 -7788 . DOI:10.1021/ma5019186http://doi.org/10.1021/ma5019186 .
Yue, T. J.; Ren, W. M.; Chen, L.; Gu, G. G.; Liu, Y.; Lu, X. B . Synthesis of chiral sulfur-containing polymers: asymmetric copolymerization of meso-epoxides and carbonyl sulfide . Angew. Chem. Int. Ed. , 2018 . 57 12670 -12674 . DOI:10.1002/anie.201805200http://doi.org/10.1002/anie.201805200 .
Li, J.; Liu, Y.; Ren, W. M.; Lu, X. B . Asymmetric alternating copolymerization of meso-epoxides and cyclic anhydrides: efficient access to enantiopure polyesters . J. Am. Chem. Soc. , 2016 . 138 11493 -11496 . DOI:10.1021/jacs.6b07520http://doi.org/10.1021/jacs.6b07520 .
Li, J.; Ren, B. H.; Chen, S. Y.; He, G. H.; Liu, Y.; Ren, W. M.; Zhou, H.; Lu, X. B . Development of highly enantioselective catalysts for asymmetric copolymerization of meso-epoxides and cyclic anhydrides: subtle modification resulting in superior enantioselectivity . ACS Catal. , 2019 . 9 1915 -1922 . DOI:10.1021/acscatal.9b00113http://doi.org/10.1021/acscatal.9b00113 .
Li, J.; Ren, B. H.; Wan, Z. Q.; Chen, S. Y.; Liu, Y.; Ren, W. M.; Lu, X. B . Enantioselective resolution copolymerization of racemic epoxides and anhydrides: efficient approach for stereoregular polyesters and chiral epoxides . J. Am. Chem. Soc. , 2019 . 141 8937 -8942 . DOI:10.1021/jacs.9b02722http://doi.org/10.1021/jacs.9b02722 .
Li, J.; Wang, M. W.; Liu, Y.; Ren, W. M.; Lu, X. B . Photoinduced reversible semicrystalline-to-amorphous state transitions of stereoregular azopolyesters . Angew. Chem. Int. Ed. , 2021 . 60 17898 -17903 . DOI:10.1002/anie.202104750http://doi.org/10.1002/anie.202104750 .
Li, J.; Liu, Y.; Ren, W. M.; Lu, X. B . Enantioselective terpolymerization of racemic and meso-epoxides with anhydrides for preparation of chiral polyesters . Proc. Natl. Acad. Sci. U.S.A. , 2020 . 117 15429 -15436 . DOI:10.1073/pnas.2005519117http://doi.org/10.1073/pnas.2005519117 .
Li, W. B.; Liu, Y.; Lu, X. B . Bimetallic cobalt complex-mediated enantioselective terpolymerizations of carbon dioxide, cyclohexene oxide, and β-butyrolactone . Organometallics , 2020 . 39 1628 -1633 . DOI:10.1021/acs.organomet.9b00782http://doi.org/10.1021/acs.organomet.9b00782 .
He, G. H.; Ren, B. H.; Chen, S. Y.; Liu, Y.; Lu, X. B . Enantioselective, stereoconvergent resolution copolymerization of racemic cis-internal epoxides and anhydrides . Angew. Chem. Int. Ed. , 2021 . 60 5994 -6002 . DOI:10.1002/anie.202011259http://doi.org/10.1002/anie.202011259 .
Liu, Y. L.; He, G. H.; Liu, Y.; Lu, X. B . Enantioselective resolution copolymerization of racemic 2,3-disubstituted cis-epoxides with CO2 mediatedby binuclear cobalt(III) catalyst . Chin. J. Chem. , 2021 . 39 2386 -2390 . DOI:10.1002/cjoc.202100252http://doi.org/10.1002/cjoc.202100252 .
Romain, C.; Thevenon, A.; Saini, P. K.; Williams, C. K . Dinuclear metal complex-mediated formation of CO2-based polycarbonates . Top. Organomet. Chem. , 2016 . 53 101 -142. .
Lee, B. Y.; Kwon, H. Y.; Lee, S. Y.; Na, S. J.; Han, S.; Yun, H.; Lee, H.; Park, Y. W . Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization . J. Am. Chem. Soc. , 2005 . 127 3031 -3037 . DOI:10.1021/ja0435135http://doi.org/10.1021/ja0435135 .
Saini, P. K.; Romain, C.; Williams, C. K . Dinuclear metal catalysts: improved performance of heterodinuclear mixed catalysts for CO2-epoxide copolymerization . Chem. Commun. , 2014 . 50 4164 -4167 . DOI:10.1039/C3CC49158Ghttp://doi.org/10.1039/C3CC49158G .
Kissling, S.; Lehenmeier, M. W.; Altenbuchner, P. T.; Kronast, A.; Reiter, M.; Deglmann, P.; Seemann, U. B.; Rieger, B . Dinuclear zinc catalysts with unprecedented activities for the copolymerization of cyclohexene oxide and CO2 . Chem. Commun. , 2015 . 51 4579 -4582 . DOI:10.1039/C5CC00784Dhttp://doi.org/10.1039/C5CC00784D .
Su, Y. C.; Tsui, C. H.; Tsai, C. Y.; Ko, B. T . Highly active bimetallic nickel catalysts for alternating copolymerization of carbon dioxide with epoxides . Polym. Chem. , 2020 . 11 3225 -3236 . DOI:10.1039/D0PY00174Khttp://doi.org/10.1039/D0PY00174K .
Deacy, A. C.; Kilpatrick, A. F. R.; Regoutz, A.; Williams, C. K . Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO2 and epoxides . Nat. Chem. , 2020 . 12 372 -380 . DOI:10.1038/s41557-020-0450-3http://doi.org/10.1038/s41557-020-0450-3 .
Lu, X. B . Partners in catalysis . Nat. Chem. , 2020 . 12 324 -326 . DOI:10.1038/s41557-020-0447-yhttp://doi.org/10.1038/s41557-020-0447-y .
Deacy, A. C.; Moreby, E.; Phanopoulos, A.; Williams, C. K . Co(III)/alkali-metal(I) heterodinuclear catalysts for the ring-opening copolymerization of CO2 and propylene oxide . J. Am. Chem. Soc. , 2020 . 142 19150 -19160 . DOI:10.1021/jacs.0c07980http://doi.org/10.1021/jacs.0c07980 .
Diment, W. T.; Gregory, G. L.; Kerr, R. W. F.; Phanopoulos, A.; Buchard, A.; Williams, C. K . Catalytic synergy using Al(III) and group 1 metals to accelerate epoxide and anhydride ring-opening copolymerizations . ACS Catal. , 2021 . 11 12532 -12542 . DOI:10.1021/acscatal.1c04020http://doi.org/10.1021/acscatal.1c04020 .
Ren, W. M.; Wang, R. J.; Ren, B. H.; Gu, G. G.; Yue, T. J . Mechanism-inspired design of heterodinuclear catalysts for copolymerization of epoxide and lactone . Chinese J. Polym. Sci. , 2020 . 38 950 -957 . DOI:10.1007/s10118-020-2413-yhttp://doi.org/10.1007/s10118-020-2413-y .
Ren, W. M.; Gao, H. J.; Yue, T. J . Flexible gradient poly(ether-ester) from the copolymerization of epoxides and ε-caprolactone mediated by a hetero-bimetallic complex . Chinese J. Polym. Sci. , 2021 . 39 1013 -1019 . DOI:10.1007/s10118-021-2559-2http://doi.org/10.1007/s10118-021-2559-2 .
Duan, R.; Hu, C.; Sun, Z.; Zhang, H.; Pang, X.; Chen, X . Conjugated tri-nuclear Salen-Co complexes for the copolymerization of epoxides/CO2: cocatalyst-free catalysis . Green Chem. , 2019 . 21 4723 -4731 . DOI:10.1039/C9GC02045Dhttp://doi.org/10.1039/C9GC02045D .
Cui, L.; Ren, B. H.; Lu, X. B . Trinuclear Salphen-chromium(III) chloride complexes as catalysts for the alternating copolymerization of epoxides and cyclic anhydrides . J. Polym. Sci. , 2021 . 59 1821 -1828 . DOI:10.1002/pol.20210334http://doi.org/10.1002/pol.20210334 .
Yang, J.-C.; Yang, J.; Li, W.-B.; Lu, X.-B.; Liu, Y. Carbonylative polymerization of epoxides mediated by tri-metallic complexes: a dual catalysis strategy for synthesis of biodegradable polyhydroxyalkanoates. Angew. Chem. Int. Ed. 2021, https://doi.org/10.1002/anie.202116208.
Liu, Y.; Ren, W. M.; He, K. K.; Zhang, W. Z.; Li, W. B.; Wang, M.; Lu, X. B . CO2-mediated formation of chiral carbamates from meso-epoxides via polycarbonate intermediates . J. Org. Chem. , 2016 . 81 8959 -8966 . DOI:10.1021/acs.joc.6b01616http://doi.org/10.1021/acs.joc.6b01616 .
0
浏览量
42
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构