a.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
c.POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
d.IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
gmliu@iccas.ac.cn
Scan for full text
Ricardo Arpad Pérez-Camargo, Guo-Ming Liu, Du-Jin Wang, 等. Experimental and Data Fitting Guidelines for the Determination of Polymer Crystallization Kinetics[J]. Chinese Journal of Polymer Science, 2022,40(6):658-691.
Ricardo Arpad Pérez-Camargo, Guo-Ming Liu, Du-Jin Wang, et al. Experimental and Data Fitting Guidelines for the Determination of Polymer Crystallization Kinetics[J]. Chinese Journal of Polymer Science, 2022,40(6):658-691.
Ricardo Arpad Pérez-Camargo, Guo-Ming Liu, Du-Jin Wang, 等. Experimental and Data Fitting Guidelines for the Determination of Polymer Crystallization Kinetics[J]. Chinese Journal of Polymer Science, 2022,40(6):658-691. DOI: 10.1007/s10118-022-2724-2.
Ricardo Arpad Pérez-Camargo, Guo-Ming Liu, Du-Jin Wang, et al. Experimental and Data Fitting Guidelines for the Determination of Polymer Crystallization Kinetics[J]. Chinese Journal of Polymer Science, 2022,40(6):658-691. DOI: 10.1007/s10118-022-2724-2.
This work studies, through practical examples, how to perform isothermal experiments, either continuously or by step, and how to fit or analyze the generated data with the Avrami, and Lauritzen and Hoffman theories, using the Crystallization Fit Origin App ® developed by us.
The crystallization kinetics of semicrystalline polymers is often studied with isothermal experiments and analyzed by fitting the data with analytical expressions of the Avrami and Lauritzen and Hoffman (LH) theories. To correctly carry out the analysis, precautions in both experiments and data fitting should be taken. Here, we systematically discussed the factors that influence the validity of the crystallization kinetics study. The basic concepts and fundamentals of the Avrami and LH theories were introduced at first. Then, experimental protocols were discussed in detail. To clarify the impact of various experimental parameters, selected common polymers,i.e., polypropylene and polylactide, were studied using various experimental techniques (,i.e., differential scanning calorimetry and polarized light optical microscopy). Common mistakes were simulated under conditions when non-ideal experimental parameters were applied. Furthermore, from a practical point of view, we show how to fit the experimental data to the Avrami and the LH theories, using an Origin,®, App developed by us.
Isothermal crystallizationAvrami equationLauritzen and Hoffman theoryThermal analysisStep-crystallization
Xu, J.; Reiter, G.; Alamo, R. G . Concepts of nucleation in polymer crystallization . Crystals , 2021 . 11 304 DOI:10.3390/cryst11030304http://doi.org/10.3390/cryst11030304 .
Ozawa, T . Kinetics of non-isothermal crystallization . Polymer , 1971 . 12 150 -158 . DOI:10.1016/0032-3861(71)90041-3http://doi.org/10.1016/0032-3861(71)90041-3 .
Toda, A . A reinterpretation of the Ozawa model for non-isothermal crystallization at fixed scan rates . Thermochimica Acta , 2021 . 707 179086 .
Di Lorenzo, M. L.; Silvestre, C . Non-isothermal crystallization of polymers . Prog. Polym. Sci. , 1999 . 24 917 -950 . DOI:10.1016/S0079-6700(99)00019-2http://doi.org/10.1016/S0079-6700(99)00019-2 .
Avrami, M. Granulation, phase change, and microstructure kinetics of phase change . III . J. Chem. Phys. , 1941 . 9 177 -184 . DOI:10.1063/1.1750872http://doi.org/10.1063/1.1750872 .
Avrami, M . Kinetics of phase change. I. General theory . J. Chem. Phys. , 1939 . 7 1103 -1112 . DOI:10.1063/1.1750380http://doi.org/10.1063/1.1750380 .
Avrami, M . Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei . J. Chem. Phys. , 1940 . 8 212 -224 . DOI:10.1063/1.1750631http://doi.org/10.1063/1.1750631 .
Fanfoni, M.; Tomellini, M . The Johnson-Mehl-Avrami-Kohnogorov model: a brief review . Il Nuovo Cimento D , 1998 . 20 1171 -1182 . DOI:10.1007/BF03185527http://doi.org/10.1007/BF03185527 .
Lorenzo, A. T.; Arnal, M. L.; Albuerne, J.; Müller, A. J . DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems . Polym. Test. , 2007 . 26 222 -231 . DOI:10.1016/j.polymertesting.2006.10.005http://doi.org/10.1016/j.polymertesting.2006.10.005 .
Piorkowska, E.; Galeski, A.; Haudin, J. M . Critical assessment of overall crystallization kinetics theories and predictions . Prog. Polym. Sci. , 2006 . 31 549 -575 . DOI:10.1016/j.progpolymsci.2006.05.001http://doi.org/10.1016/j.progpolymsci.2006.05.001 .
Hoffman, J. D.; Lauritzen, J. I. Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites J. Res. Natl. Bur. Stand., Sect. A 1961, 65A, 297-336.
Lauritzen, J. I.; Hoffman, J. D . Theory of formation of polymer crystals with folded chains in dilute solution . J. Res. Natl. Bur. Stand., Sect. A , 1960 . 64A 73 -102 . DOI:10.6028/jres.064A.007http://doi.org/10.6028/jres.064A.007 .
Muthukumar, M.; Welch, P . Modeling polymer crystallization from solutions . Polymer , 2000 . 41 8833 -8837 . DOI:10.1016/S0032-3861(00)00226-3http://doi.org/10.1016/S0032-3861(00)00226-3 .
Zhang, M. C.; Guo, B. H.; Xu, J . A review on polymer crystallization theories . Crystals , 2017 . 7 4 .
Hoffman, J. D.; Miller, R. L . Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment . Polymer , 1997 . 38 3151 -3212 . DOI:10.1016/S0032-3861(97)00071-2http://doi.org/10.1016/S0032-3861(97)00071-2 .
Baltá-Calleja, F. J.; Ezquerra, T. A., Polymer crystallization: general concepts of theory and experiments. In Encyclopedia of Materials: Science and Technology, Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., Veyssière, P., Eds. Elsevier: Oxford, 2001; pp. 7244−7252.
Gedde, U. W.; Hedenqvist, M. S., Crystallization Kinetics. In Fundamental Polymer Science, Springer International Publishing: Cham, 2019; pp. 327−386.
Wypych, G., Handbook of Nucleating Agents. ChemTec Publishing: 2016; pp. 1−3.
Sangroniz, L.; Cavallo, D.; Müller, A. J . Self-nucleation effects on polymer crystallization . Macromolecules , 2020 . 53 4581 -4604 . DOI:10.1021/acs.macromol.0c00223http://doi.org/10.1021/acs.macromol.0c00223 .
Michell, R. M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A. J . Confinement effects on polymer crystallization: from droplets to alumina nanopores . Polymer , 2013 . 54 4059 -4077 . DOI:10.1016/j.polymer.2013.05.029http://doi.org/10.1016/j.polymer.2013.05.029 .
Michell, R. M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A. J . Confined crystallization of polymers within anodic aluminum oxide templates . J. Polym. Sci., Part B: Polym. Phys. , 2014 . 52 1179 -1194 . DOI:10.1002/polb.23553http://doi.org/10.1002/polb.23553 .
Schick, C.; Androsch, R., New Insights into Polymer Crystallization by Fast Scanning Chip Calorimetry. In Fast Scanning Calorimetry, Schick, C., Mathot, V., Eds. Springer International Publishing: Cham, 2016; pp. 463−535.
Cavallo, D.; Müller, A. J., Polymer Crystallization. In Macromolecular Engineering: From Precise Synthesis to Macroscopic Materials and Applications, 2nd Edition ed.; Matyjaszewski, K., Gnanou, Y., Hadjichristidi, N., Muthukumar, M., Eds. John Wiley & Sons, Inc.: 2022.
Müller, A. J.; Michell, R. M.; Lorenzo, A. T., Isothermal Crystallization Kinetics of Polymers. In Polymer Morphology, 2016; pp. 181−203.
Fillon, B.; Wittmann, J . C.; Lotz, B.; Thierry, A. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry . J. Polym. Sci., Part B: Polym. Phys. , 1993 . 31 1383 -1393. .
Michell, R. M.; Mugica, A.; Zubitur, M.; Müller, A. J., Self-Nucleation of Crystalline Phases Within Homopolymers, Polymer Blends, Copolymers, and Nanocomposites. In Polymer Crystallization I: From Chain Microstructure to Processing, Auriemma, F., Alfonso, G. C., de Rosa, C., Eds. Springer International Publishing: Cham, 2017; pp. 215−256.
Müller, A. J.; Michell, R. M.; Pérez, R. A.; Lorenzo, A. T . Successive self-nucleation and annealing (SSA): correct design of thermal protocol and applications . Eur. Polym. J. , 2015 . 65 132 -154 . DOI:10.1016/j.eurpolymj.2015.01.015http://doi.org/10.1016/j.eurpolymj.2015.01.015 .
López-Barrón, C. R.; Hagadorn, J. R.; Throckmorton, J. A . Isothermal crystallization kinetics of α-olefin molecular bottlebrushes . Macromolecules , 2020 . 53 7439 -7449 . DOI:10.1021/acs.macromol.0c01282http://doi.org/10.1021/acs.macromol.0c01282 .
Lorenzo, A. T.; Müller, A. J . Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier . J. Polym. Sci., Part B: Polym. Phys. , 2008 . 46 1478 -1487 . DOI:10.1002/polb.21483http://doi.org/10.1002/polb.21483 .
Pérez-Camargo, R. A.; Meabe, L.; Liu, G.; Sardon, H.; Zhao, Y.; Wang, D.; Müller, A. J . Even-Odd effect in aliphatic polycarbonates with different chain lengths: from poly(hexamethylene carbonate) topoly (dodecamethylene carbonate) . Macromolecules , 2020 . 54 259 -271. .
Zhang, S.; Wang, Z.; Guo, B.; Xu, J . Secondary nucleation in polymer crystallization: a kinetic view . Polym. Cryst. , 2021 . 4 e10173 .
Androsch, R.; Toda, A.; Furushima, Y.; Schick, C . Insertion-crystallization-induced low-temperature annealing peaks in melt-crystallized poly(L-lactic acid) . Macromol. Chem. Phys. , 2021 . 222 2100177 DOI:10.1002/macp.202100177http://doi.org/10.1002/macp.202100177 .
Wutz, C.; Bark, M.; Cronauer, J.; Döhrmann, R.; Zachmann, H. G . Simultaneous measurements of small angle X-ray scattering, wide angle X-ray scattering, and light scattering during phase transitions in polymers . Rev. Scientif. Instr. , 1995 . 66 1303 -1307 . DOI:10.1063/1.1145959http://doi.org/10.1063/1.1145959 .
Gedde, U. W., Polymer Physics. Springer Netherlands: 1999; p. 298.
Nogales, A.; Ezquerra, T. A.; Batallán, F.; Frick, B.; López-Cabarcos, E.; Baltá-Calleja, F. J . Restricted dynamics in poly(ether ether ketone) as revealed by incoherent quasielastic neutron scattering and broad-band dielectric spectroscopy . Macromolecules , 1999 . 32 2301 -2308 . DOI:10.1021/ma9815758http://doi.org/10.1021/ma9815758 .
Murthy, N. S., Chapter 3—Experimental Techniques for Understanding Polymer Crystallization. In Crystallization in Multiphase Polymer Systems, Thomas, S., Arif P, M., Gowd, E. B., Kalarikkal, N., Eds. Elsevier: 2018; pp. 49−72.
Rueda, D. R.; Viksne, A.; Malers, L.; Calleja, F. J. B.; Zachmann, H. G . Influence of morphology on the microhardness of poly(ethylene naphthalene-2,6-dicarboxylate) . Macromol. Chem. Phys. , 1994 . 195 3869 -3876 . DOI:10.1002/macp.1994.021951213http://doi.org/10.1002/macp.1994.021951213 .
Baltá Calleja, F. J.; Fakirov, S., Microhardness of Polymers. Cambridge University Press: Cambridge, 2000.
Mandelkern, L., Crystallization of Polymers: Volume 1: Equilibrium Concepts. 2 ed.; Cambridge University Press: Cambridge, 2002; Vol. 1.
Ergoz, E.; Fatou, J. G.; Mandelkern, L. Molecular weight dependence of the crystallization kinetics of linear polyethylene. I . Experimental results . Macromolecules , 1972 . 5 147 -157 . DOI:10.1021/ma60026a011http://doi.org/10.1021/ma60026a011 .
Balsamo, V.; Urdaneta, N.; Pérez, L.; Carrizales, P.; Abetz, V.; Müller, A. J . Effect of the polyethylene confinement and topology on its crystallisation within semicrystalline ABC triblock copolymers . Eur. Polym. J. , 2004 . 40 1033 -1049 . DOI:10.1016/j.eurpolymj.2004.01.009http://doi.org/10.1016/j.eurpolymj.2004.01.009 .
Müller, A. J.; Balsamo, V.; Arnal, M. L., Nucleation and Crystallization in Diblock and Triblock Copolymers. In Block Copolymers II, Abetz, V., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp. 1−63.
Su, C.; Chen, Y.; Shi, G.; Li, T.; Liu, G.; Müller, A. J.; Wang, D . Crystallization kinetics of poly(ethylene oxide) under confinement in nanoporous alumina studied by in situ X-ray scattering and simulation . Langmuir , 2019 . 35 11799 -11808 . DOI:10.1021/acs.langmuir.9b01968http://doi.org/10.1021/acs.langmuir.9b01968 .
Michell, R. M.; Müller, A. J. Confined crystallization of polymeric materials. Prog. Polym. Sci. 2016, 54-55, 183-213.
Fisher, J. C.; Hollomon, J. H.; Turnbull, D . Nucleation . J. Appl. Phys. , 1948 . 19 775 -784 . DOI:10.1063/1.1698202http://doi.org/10.1063/1.1698202 .
Lauritzen Jr, J. I.; Hoffman, J. D . Formation of polymer crystals with folded chains from dilute solution . J. Chem.Phys. , 1959 . 31 1680 -1681 . DOI:10.1063/1.1730678http://doi.org/10.1063/1.1730678 .
Patki, R.; Mezghani, K.; Phillips, P. J., Crystallization Kinetics of Polymers. In Physical Properties of Polymers Handbook, Mark, J. E., Ed. Springer New York: New York, NY, 2007; pp. 625−640.
Mandelkern, L., Crystallization of Polymers: Volume 2: Kinetics and Mechanisms. 2 ed.; Cambridge University Press: Cambridge, 2004; Vol. 2.
Müller, A. J.; Albuerne, J.; Marquez, L.; Raquez, J. M.; Degée, P.; Dubois, P.; Hobbs, J.; Hamley, I. W . Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers . Faraday Discuss. , 2005 . 128 231 -252 . DOI:10.1039/B403085Khttp://doi.org/10.1039/B403085K .
Sabino, M. A.; Albuerne, J.; Müller, A. J.; Brisson, J.; Prud'homme, R. E . Influence of in vitro hydrolytic degradation on the morphology and crystallization behavior of poly(p-dioxanone) . Biomacromolecules , 2004 . 5 358 -370 . DOI:10.1021/bm034367ihttp://doi.org/10.1021/bm034367i .
Sadler, D. M.; Gilmer, G. H . Rate-theory model of polymer crystallization . Phys. Rev. Lett. , 1986 . 56 2708 -2711 . DOI:10.1103/PhysRevLett.56.2708http://doi.org/10.1103/PhysRevLett.56.2708 .
Hu, W.; Frenkel, D.; Mathot, V. B. F . Intramolecular nucleation model for polymer crystallization . Macromolecules , 2003 . 36 8178 -8183 . DOI:10.1021/ma0344285http://doi.org/10.1021/ma0344285 .
Strobl, G . From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization . Eur. Phys. J. E , 2000 . 3 165 -183 . DOI:10.1007/s101890070030http://doi.org/10.1007/s101890070030 .
Kundagrami, A.; Muthukumar, M . Continuum theory of polymer crystallization . J. Chem. Phys. , 2007 . 126 144901 DOI:10.1063/1.2713380http://doi.org/10.1063/1.2713380 .
Li, C. Y . The rise of semicrystalline polymers and why are they still interesting . Polymer , 2020 . 211 123150 DOI:10.1016/j.polymer.2020.123150http://doi.org/10.1016/j.polymer.2020.123150 .
Hu, W. Principles of Polymer Crystallization. Chemical Industry Press, Beijing, 2021.
Hu, W . Growth rate equations of lamellar polymer crystals . Polym. Cryst. , 2018 . 1 e25831 .
Armitstead, K.; Goldbeck-Wood, G.; Keller, A., Polymer crystallization theories. In Macromolecules: Synthesis, Order and Advanced Properties, Springer Berlin Heidelberg: Berlin, Heidelberg, 1992; pp. 219−312.
Hiemenz, P. C.; Lodge, T. P., Polymer Chemistry Second Edition ed.; CRC Press: 2007.
Liang, G.; Bao, S.; Zhu, F., Chapter 2 - Theoretical Aspects of Polymer Crystallization in Multiphase Systems. In Crystallization in Multiphase Polymer Systems, Thomas, S., Arif P, M., Gowd, E. B., Kalarikkal, N., Eds. Elsevier: 2018; pp. 17−48.
Thomas, D. G.; Staveley, L. A. K. 889 . A study of the supercooling of drops of some molecular liquids . J. Chem. Soc. , 1952 . 4569 -4577 . DOI:10.1039/jr9520004569http://doi.org/10.1039/jr9520004569 .
Lorenzo, A. T.; Arnal, M. L.; Sánchez, J. J.; Müller, A. J . Effect of annealing time on the self-nucleation behavior of semicrystalline polymers . J. Polym. Sci., Part B: Polym. Phys. , 2006 . 44 1738 -1750 . DOI:10.1002/polb.20832http://doi.org/10.1002/polb.20832 .
Galante, M. J.; Mandelkern, L.; Alamo, R . G.; Lehtinen, A.; Paukker, R. Crystallization kinetics of metallocene type polypropylenes . J. Therm. Anal. , 1996 . 47 913 -929 . DOI:10.1007/BF01979439http://doi.org/10.1007/BF01979439 .
Hay, J. N.; Mills, P. J . The use of differential scanning calorimetry to study polymer crystallization kinetics . Polymer , 1982 . 23 1380 -1384 . DOI:10.1016/0032-3861(82)90283-Xhttp://doi.org/10.1016/0032-3861(82)90283-X .
Hay, J. N.; Booth, A . The effect of a secondary process on the course of polymer crystallisation . Brit. Polym. J. , 1972 . 4 19 -26 . DOI:10.1002/pi.4980040104http://doi.org/10.1002/pi.4980040104 .
Wang, B.; Utzeri, R.; Castellano, M.; Stagnaro, P.; Müller, A. J.; Cavallo, D . Heterogeneous nucleation and self-nucleation of isotactic polypropylene microdroplets in immiscible blends: from nucleation to growth-dominated crystallization . Macromolecules , 2020 . 53 5980 -5991 . DOI:10.1021/acs.macromol.0c01167http://doi.org/10.1021/acs.macromol.0c01167 .
Androsch, R.; Di Lorenzo, M. L . Crystal nucleation in glassy poly(L-lactic acid) . Macromolecules , 2013 . 46 6048 -6056 . DOI:10.1021/ma401036jhttp://doi.org/10.1021/ma401036j .
Androsch, R.; Schick, C.; Di Lorenzo, M. L., Kinetics of Nucleation and Growth of Crystals of Poly(l-lactic acid). In Synthesis, Structure and Properties of Poly(lactic acid), Di Lorenzo, M. L., Androsch, R., Eds. Springer International Publishing: Cham, 2018; pp. 235−272.
Müller, A. J.; Ávila, M.; Saenz, G.; Salazar, J., CHAPTER 3 Crystallization of PLA-based Materials. In Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications, The Royal Society of Chemistry: 2015; pp. 66−98.
Ruiz, M. B.; Pérez-Camargo, R. A.; López, J. V.; Penott-Chang, E.; Múgica, A.; Coulembier, O.; Müller, A. J . Accelerating the crystallization kinetics of linear polylactides by adding cyclic poly (L-lactide): Nucleation, plasticization and topological effects . Inter. J. Biol. Macromol. , 2021 . 186 255 -267 . DOI:10.1016/j.ijbiomac.2021.07.028http://doi.org/10.1016/j.ijbiomac.2021.07.028 .
OriginLab Crystallization Fit. https://www.originlab.com/fileExchange/details.aspx?fid=597 (March 09, 2021),
Kholodovych, V.; Welsh, W. J., Densities of Amorphous and Crystalline Polymers. In Physical Properties of Polymers Handbook, Mark, J. E., Ed. Springer New York: New York, NY, 2007; pp. 611−617.
Trujillo, M.; Arnal, M. L.; Müller, A. J.; Mujica, M . A.; Urbina de Navarro, C.; Ruelle, B.; Dubois, P. Supernucleation and crystallization regime change provoked by MWNT addition to poly(ε-caprolactone) . Polymer , 2012 . 53 832 -841 . DOI:10.1016/j.polymer.2011.12.028http://doi.org/10.1016/j.polymer.2011.12.028 .
Pérez, R. A.; Córdova, M. E.; López, J. V.; Hoskins, J. N.; Zhang, B.; Grayson, S. M.; Müller, A. J . Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(ε-caprolactone)s . React. Funct. Polym. , 2014 . 80 71 -82 . DOI:10.1016/j.reactfunctpolym.2013.10.013http://doi.org/10.1016/j.reactfunctpolym.2013.10.013 .
Pérez, R. A.; López, J. V.; Hoskins, J. N.; Zhang, B.; Grayson, S. M.; Casas, M. T.; Puiggalí, J.; Müller, A. J . Nucleation and antinucleation effects of functionalized carbon nanotubes on cyclic and linear poly(ε-caprolactones) . Macromolecules , 2014 . 47 3553 -3566 . DOI:10.1021/ma5005869http://doi.org/10.1021/ma5005869 .
Imai, M.; Mori, K.; Mizukami, T.; Kaji, K.; Kanaya, T . Structural formation of poly (ethylene terephthalate) during the induction period of crystallization: 1. Ordered structure appearing before crystal nucleation . Polymer , 1992 . 33 4451 -4456 . DOI:10.1016/0032-3861(92)90399-Hhttp://doi.org/10.1016/0032-3861(92)90399-H .
Imai, M.; Mori, K.; Mizukami, T.; Kaji, K.; Kanaya, T . Structural formation of poly(ethylene terephthalate) during the induction period of crystallization: 2. Kinetic analysis based on the theories of phase separation . Polymer , 1992 . 33 4457 -4462 . DOI:10.1016/0032-3861(92)90400-Qhttp://doi.org/10.1016/0032-3861(92)90400-Q .
Safari, M.; Mugica, A.; Zubitur, M.; Martínez de Ilarduya, A.; Muñoz-Guerra, S.; Müller, A. J . Controlling the isothermal crystallization of isodimorphic PBS-ran-PCL random copolymers by varying composition and supercooling . Polymers , 2020 . 12 17 .
Córdova, M. E.; Lorenzo, A. T.; Müller, A . J.; Gani, L.; Tencé-Girault, S.; Leibler, L. The influence of blend morphology (co-continuous or sub-micrometer droplets dispersions) on the nucleation and crystallization kinetics of double crystalline polyethylene/polyamide blends prepared by reactive extrusion . Macromol. Chem. Phys. , 2011 . 212 1335 -1350 . DOI:10.1002/macp.201100039http://doi.org/10.1002/macp.201100039 .
Müller, A. J.; Arnal, M. L.; Balsamo, V., Crystallization in Block Copolymers with More than One Crystallizable Block. In Progress in Understanding of Polymer Crystallization, Reiter, G., Strobl, G. R., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp. 229−259.
Shi, G.; Wang, Z.; Wang, M.; Liu, G.; Cavallo, D.; Müller, A. J.; Wang, D . Crystallization, orientation, and solid-solid crystal transition of polybutene-1 confined within nanoporous alumina . Macromolecules , 2020 . 53 6510 -6518 . DOI:10.1021/acs.macromol.0c01384http://doi.org/10.1021/acs.macromol.0c01384 .
Liu, G.; Müller, A. J.; Wang, D . Confined crystallization of polymers within nanopores . Acc. Chem. Res. , 2021 . 54 3028 -3038 . DOI:10.1021/acs.accounts.1c00242http://doi.org/10.1021/acs.accounts.1c00242 .
Sangroniz, L.; Wang, B.; Su, Y.; Liu, G.; Cavallo, D.; Wang, D.; Müller, A. J . Fractionated crystallization in semicrystalline polymers . Prog. Polym. Sci. , 2021 . 115 101376 DOI:10.1016/j.progpolymsci.2021.101376http://doi.org/10.1016/j.progpolymsci.2021.101376 .
Hoffman, J. D.; Weeks, J. J . Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene . J. Res. Natl. Bur. Stand. Sect. A , 1962 . 66A 13 -28 . DOI:10.6028/jres.066A.003http://doi.org/10.6028/jres.066A.003 .
Alamo, R. G.; Viers, B. D.; Mandelkern, L . A re-examination of the relation between the melting temperature and the crystallization temperature: linear polyethylene . Macromolecules , 1995 . 28 3205 -3213 . DOI:10.1021/ma00113a024http://doi.org/10.1021/ma00113a024 .
Toda, A.; Taguchi, K.; Nozaki, K . Gibbs-Thomson, thermal Gibbs-Thomson, and Hoffman-Weeks plots of polyethylene crystals examined by fast-scan calorimetry and small-angle X-ray scattering . Cryst. Growth Des. , 2019 . 19 2493 -2502. .
Müller, A. J.; Arnal, M. L . Thermal fractionation of polymers . Prog. Polym. Sci. , 2005 . 30 559 -603 . DOI:10.1016/j.progpolymsci.2005.03.001http://doi.org/10.1016/j.progpolymsci.2005.03.001 .
Müller, A. J.; Hernández, Z. H.; Arnal, M. L.; Sánchez, J. J . Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization . Polym. Bull. , 1997 . 39 465 -472 . DOI:10.1007/s002890050174http://doi.org/10.1007/s002890050174 .
Arandia, I.; Mugica, A.; Zubitur, M.; Iturrospe, A.; Arbe, A.; Liu, G.; Wang, D.; Mincheva, R.; Dubois, P.; Müller, A. J . Application of SSA thermal fractionation and X-ray diffraction to elucidate comonomer inclusion or exclusion from the crystalline phases in poly(butylene succinate-ran-butylene azelate) random copolymers . J. Polym. Sci., Part B: Polym. Phys. , 2016 . 54 2346 -2358. .
Van Krevelen, D. W., CHAPTER 5—Calorimetric Properties. In Properties of Polymers (Third Edition), Van Krevelen, D. W., Ed. Elsevier: Amsterdam, 1997; pp. 109−127.
Yamada, K.; Hikosaka, M.; Toda, A.; Yamazaki, S.; Tagashira, K . Equilibrium melting temperature of isotactic polypropylene with high tacticity: 1. Determination by differential scanning calorimetry . Macromolecules , 2003 . 36 4790 -4801 . DOI:10.1021/ma021206ihttp://doi.org/10.1021/ma021206i .
Cheng, S. Z. D.; Janimak, J. J.; Zhang, A.; Cheng, H. N . Regime transitions in fractions of isotactic polypropylene . Macromolecules , 1990 . 23 298 -303 . DOI:10.1021/ma00203a051http://doi.org/10.1021/ma00203a051 .
Pawlak, A.; Galeski, A., Crystallization of Polypropylene. In Polypropylene Handbook: Morphology, Blends and Composites, Karger-Kocsis, J., Bárány, T., Eds. Springer International Publishing: Cham, 2019; pp. 185−242.
Clark, E. J.; Hoffman, J. D . Regime III crystallization in polypropylene . Macromolecules , 1984 . 17 878 -885 . DOI:10.1021/ma00134a058http://doi.org/10.1021/ma00134a058 .
Kang, J.; Li, J.; Chen, S.; Peng, H.; Wang, B.; Cao, Y.; Li, H.; Chen, J.; Gai, J.; Yang, F.; Xiang, M . Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts . J. Appl. Polym. Sci. , 2013 . 129 2663 -2670 . DOI:10.1002/app.38984http://doi.org/10.1002/app.38984 .
Point, J. J.; Dosière, M . Crystal growth rate as a function of molecular weight in polyethylene crystallized from the melt: an evaluation of the kinetic theory of polymer crystallization . Polymer , 1989 . 30 2292 -2296 . DOI:10.1016/0032-3861(89)90264-4http://doi.org/10.1016/0032-3861(89)90264-4 .
Feng, Y.; Jin, X . Effect of self-nucleation on crystallization and melting behavior of polypropylene and its copolymers . J. Appl. Polym. Sci. , 1999 . 72 1559 -1564 . DOI:10.1002/(SICI)1097-4628(19990620)72:12<1559::AID-APP8>3.0.CO;2-Fhttp://doi.org/10.1002/(SICI)1097-4628(19990620)72:12<1559::AID-APP8>3.0.CO;2-F .
Carmeli, E.; Fenni, S. E.; Caputo, M. R.; Müller, A . J.; Tranchida, D.; Cavallo, D. Surface nucleation of dispersed polyethylene droplets in immiscible blends revealed by polypropylene matrix self-nucleation . Macromolecules , 2021 . 54 9100 -9112 . DOI:10.1021/acs.macromol.1c01430http://doi.org/10.1021/acs.macromol.1c01430 .
Habel, C.; Maiz, J.; Olmedo-Martínez, J. L.; López, J. V.; Breu, J.; Müller, A. J . Competition between nucleation and confinement in the crystallization of poly(ethylene glycol)/ large aspect ratio hectorite nanocomposites . Polymer , 2020 . 202 122734 DOI:10.1016/j.polymer.2020.122734http://doi.org/10.1016/j.polymer.2020.122734 .
Wang, H.; Keum, J . K.; Hiltner, A.; Baer, E. Crystallization kinetics of poly(ethylene oxide) in confined nanolayers . Macromolecules , 2010 . 43 3359 -3364 . DOI:10.1021/ma902780phttp://doi.org/10.1021/ma902780p .
Wen, X.; Su, Y.; Shui, Y.; Zhao, W.; Müller, A. J.; Wang, D . Correlation between grafting density and confined crystallization behavior of poly(ethylene glycol) grafted to silica . Macromolecules , 2019 . 52 1505 -1516 . DOI:10.1021/acs.macromol.8b02007http://doi.org/10.1021/acs.macromol.8b02007 .
Palacios, J. K.; Mugica, A.; Zubitur, M.; Müller, A. J., Chapter 6—Crystallization and Morphology of Block Copolymers and Terpolymers With More Than One Crystallizable Block. In Crystallization in Multiphase Polymer Systems, Thomas, S., Arif P, M., Gowd, E. B., Kalarikkal, N., Eds. Elsevier: 2018; pp. 123−180.
Müller, A. J.; Michell, R. M., Differential scanning calorimetry of polymers. In Polymer Morphology, 2016; pp. 72−99.
Müller, A. J.; Arnal, M. L.; Lorenzo, A. T., Crystallization in nano-confined polymeric systems. In Handbook of Polymer Crystallization, 2013; pp. 347−378.
Liu, G.; Shi, G.; Wang, D. . Research Progress on Polymer Crystallization Confined within Nano-porous AAO Templates . Acta Polymerica Sinica (in Chinese) , 2020 . 51 501 -516 . DOI:10.11777/j.issn1000-3304.2020.20003http://doi.org/10.11777/j.issn1000-3304.2020.20003 .
Castillo, R. V.; Müller, A. J . Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers . Prog. Polym. Sci. , 2009 . 34 516 -560 . DOI:10.1016/j.progpolymsci.2009.03.002http://doi.org/10.1016/j.progpolymsci.2009.03.002 .
Androsch, R.; Rhoades, A . M.; Stolte, I.; Schick, C. Density of heterogeneous and homogeneous crystal nuclei in poly(butylene terephthalate) . Eur. Polym. J. , 2015 . 66 180 -189 . DOI:10.1016/j.eurpolymj.2015.02.013http://doi.org/10.1016/j.eurpolymj.2015.02.013 .
Wang, M.; Li, J.; Shi, G.; Liu, G.; Müller, A. J.; Wang, D . Suppression of the self-nucleation effect of semicrystalline polymers by confinement . Macromolecules , 2021 . 54 3810 -3821 . DOI:10.1021/acs.macromol.1c00485http://doi.org/10.1021/acs.macromol.1c00485 .
0
浏览量
20
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构