a.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
b.Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
c.Department of Materials and Food, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
kevinlin1990@163.com (K.W.L.)
able.ztliu@wit.edu.cn (Z.T.L.)
duanchunhui@scut.edu.cn (C.H.D.)
Scan for full text
Yun-Li Zhao, Yue Zhang, Xi-Yue Yuan, 等. Halogen-free Polymer Donors Based on 3,4-Dicyanothiophene for High-performance Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2022,40(8):905-913.
Yun-Li Zhao, Yue Zhang, Xi-Yue Yuan, et al. Halogen-free Polymer Donors Based on 3,4-Dicyanothiophene for High-performance Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2022,40(8):905-913.
Yun-Li Zhao, Yue Zhang, Xi-Yue Yuan, 等. Halogen-free Polymer Donors Based on 3,4-Dicyanothiophene for High-performance Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2022,40(8):905-913. DOI: 10.1007/s10118-022-2721-5.
Yun-Li Zhao, Yue Zhang, Xi-Yue Yuan, et al. Halogen-free Polymer Donors Based on 3,4-Dicyanothiophene for High-performance Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2022,40(8):905-913. DOI: 10.1007/s10118-022-2721-5.
A set of halogen-free polymers (PBCNT25, PBCNT50, and PBCNT75) based on 3,4-dicyanothiophene (DCT) have been constructed via ternary random copolymerization for high-performance polymer solar cells (PSCs). A remarkable efficiency of 15.7% has been achieved in PBCNT75:Y6-BO blend, which is one of the best results achieved by halogen-free polymers.
Polymer solar cells (PSCs) consisting of a polymer donor and a small molecular acceptor is a promising photovoltaic technology, whose device performance is determined by both polymer donor and small molecular acceptor. Halogen atoms such as fluorine or chlorine atoms were usually introduced onto the polymer donors to downshift the highest occupied molecular orbital (HOMO) energy levels and improve the open-circuit voltage (,V,OC,) of the PSCs. However, the introduction of the halogen atoms especially fluorine atoms greatly complicates the polymer synthesis. Herein, we report the use of a structural simple and easily synthesized building block, 3,4-dicyanothiophene (DCT), to construct a set of halogen-free polymer donors PBCNT,x, (,x,=25, 50, 75) ,via, ternary random copolymerization. The introduction of DCT units not only simplified the synthesis, but also downshifted the HOMO energy levels of the polymers and improved the ,V,OC, of PSCs effectively. Encouragingly, the PBCNT75 afforded a power conversion efficiency up to 15.7% with a ,V,OC, of 0.83 V, which are among the top values for halogen-free polymer donors. This work shows that the introduction of DCT units is a simple yet effective strategy to construct halogen-free and low-cost polymer donors for high-performance PSCs.
Polymer solar cellsPolymer donorsHalogen-freeOpen-circuit voltageEnergy loss
Li, G.; Zhu, R.; Yang, Y . Polymer solar cells . Nat. Photonics , 2012 . 6 153 -161 . DOI:10.1038/nphoton.2012.11http://doi.org/10.1038/nphoton.2012.11 .
Lin, Y.; Wang, J.; Zhang, Z . G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 . 27 1170 -1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J . Molecular optimization enables over 13% efficiency in organic solar cells . J. Am. Chem. Soc. , 2017 . 139 7148 -7151 . DOI:10.1021/jacs.7b02677http://doi.org/10.1021/jacs.7b02677 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P . A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Duan, C.; Ding, L . The new era for organic solar cells: non-fullerene small molecular acceptors . Sci. Bull. , 2020 . 65 1231 -1233 . DOI:10.1016/j.scib.2020.04.030http://doi.org/10.1016/j.scib.2020.04.030 .
Yang, M.; Wei, W.; Zhou, X.; Wang, Z.; Duan, C . Non-fused ring acceptors for organic solar cells . Energy Mater. , 2021 . 1 100008 .
Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y . Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells . Nat. Energy , 2021 . 6 605 -613 . DOI:10.1038/s41560-021-00820-xhttp://doi.org/10.1038/s41560-021-00820-x .
Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X . Non-fullerene acceptors for organic solar cells . Nat. Rev. Mater. , 2018 . 3 18003 DOI:10.1038/natrevmats.2018.3http://doi.org/10.1038/natrevmats.2018.3 .
Zhang, G.; Zhao, J.; Chow, P. C . Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells . Chem. Rev. , 2018 . 118 3447 -3507 . DOI:10.1021/acs.chemrev.7b00535http://doi.org/10.1021/acs.chemrev.7b00535 .
Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R; Yip, H. L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% . efficiency . Science , 2018 . 361 1094 -1098 . DOI:10.1126/science.aat2612http://doi.org/10.1126/science.aat2612 .
Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J . Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages . Nat. Commun. , 2019 . 10 2515 DOI:10.1038/s41467-019-10351-5http://doi.org/10.1038/s41467-019-10351-5 .
Zhang, M.; Zhu, L.; Hao, T.; Zhou, G.; Qiu, C.; Zhao, Z.; Hartmann, N.; Xiao, B.; Zou, Y.; Feng, W.; Zhu, H.; Zhang, M.; Zhang, Y.; Li, Y.; Russell, T. P.; Liu, F . High-efficiency organic photovoltaics using eutectic acceptor fibrils to achieve current amplification . Adv. Mater. , 2021 . 33 2007177 DOI:10.1002/adma.202007177http://doi.org/10.1002/adma.202007177 .
Xu, X.; Feng, K.; Lee, Y. W.; Woo, H . Y.; Zhang, G.; Peng, Q. Subtle polymer donor and molecular acceptor design enable efficient polymer solar cells with a very small energy loss . Adv. Funct. Mater. , 2020 . 30 1907570 DOI:10.1002/adfm.201907570http://doi.org/10.1002/adfm.201907570 .
Duan, C.; Ding, L . The new era for organic solar cells: polymer donors . Sci. Bull. , 2020 . 65 1422 -1424 . DOI:10.1016/j.scib.2020.04.044http://doi.org/10.1016/j.scib.2020.04.044 .
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L . 18% Efficiency organic solar cells . Sci. Bull. , 2020 . 65 272 -275 . DOI:10.1016/j.scib.2020.01.001http://doi.org/10.1016/j.scib.2020.01.001 .
Fan, B.; Li, M.; Zhang, D.; Zhong, W.; Ying, L.; Zeng, Z.; An, K.; Huang, Z.; Shi, L.; Bazan, G . C.; Huang, F.; Cao, Y. Tailoring regioisomeric structures of π-conjugated polymers containing monofluorinated π-bridges for highly efficient polymer solar cells . ACS Energy Lett. , 2020 . 5 2087 -2094 . DOI:10.1021/acsenergylett.0c00939http://doi.org/10.1021/acsenergylett.0c00939 .
Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J . Single-junction organic photovoltaic cells with approaching 18% efficiency . Adv. Mater. , 2020 . 32 1908205 DOI:10.1002/adma.201908205http://doi.org/10.1002/adma.201908205 .
Zhu, C.; Meng, L.; Zhang, J.; Qin, S.; Lai, W.; Qiu, B.; Yuan, J.; Wan, Y.; Huang, W.; Li, Y . A quinoxaline-based D-A copolymer donor achieving 17.62% efficiency of organic solar cells . Adv. Mater. , 2021 . 33 2100474 DOI:10.1002/adma.202100474http://doi.org/10.1002/adma.202100474 .
Zhang, T.; An, C.; Bi, P.; Lv, Q.; Qin, J.; Hong, L.; Cui, Y.; Zhang, S.; Hou, J. A thiadiazole-based conjugated polymer with ultradeep HOMO level and strong electroluminescence enables 18.6% . efficiency in organic solar cell . Adv. Energy Mater. , 2021 . 11 2101705 DOI:10.1002/aenm.202101705http://doi.org/10.1002/aenm.202101705 .
Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y . Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80% . Adv. Mater. , 2021 . 33 2105301 DOI:10.1002/adma.202105301http://doi.org/10.1002/adma.202105301 .
Zhang, B.; Yu, Y.; Zhou, J.; Wang, Z.; Tang, H.; Xie, S.; Xie, Z.; Hu, L.; Yip, H . L.; Ye, L.; Ade, H.; Liu, Z.; He, Z.; Duan, C.; Huang, F.; Cao, Y. 3,4-Dicyanothiophene—a versatile building block for efficient nonfullerene polymer solar cells . Adv. Energy Mater. , 2020 . 10 1904247 DOI:10.1002/aenm.201904247http://doi.org/10.1002/aenm.201904247 .
Pang, S.; Wang, Z.; Yuan, X.; Pan, L.; Deng, W.; Tang, H.; Wu, H.; Chen, S.; Duan, C.; Huang, F.; Cao, Y . A facile synthesized polymer featuring B-N covalent bond and small single-triplet gap for high-performance organic solar cells . Angew. Chem. Int. Ed. , 2021 . 60 8813 -8817 . DOI:10.1002/anie.202016265http://doi.org/10.1002/anie.202016265 .
Zhang, T.; An, C.; Cui, Y.; Zhang, J.; Bi, P.; Yang, C.; Zhang, S.; Hou, J . A universal nonhalogenated polymer donor for high-performance organic photovoltaic cells . Adv. Mater. , 2022 . 34 2105803 DOI:10.1002/adma.202105803http://doi.org/10.1002/adma.202105803 .
Xiong, J.; Jin, K.; Jiang, Y.; Qin, J.; Wang, T.; Liu, J.; Liu, Q.; Peng, H.; Li, X.; Sun, A.; Meng, X.; Zhang, L.; Liu, L.; Li, W.; Fang, Z.; Jia, X.; Xiao, Z.; Feng, Y.; Zhang, X.; Sun, K.; Yang, S.; Shi, S.; Ding, L . Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency . Sci. Bull. , 2019 . 64 1573 -1576 . DOI:10.1016/j.scib.2019.10.002http://doi.org/10.1016/j.scib.2019.10.002 .
Qin, R.; Wang, D.; Zhou, G.; Yu, Z. P.; Li, S.; Li, Y.; Liu, Z. X.; Zhu, H.; Shi, M.; Lu, X.; Li, C. Z.; Chen, H . Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells . J. Mater. Chem. A , 2019 . 7 27632 -27639 . DOI:10.1039/C9TA11285Ehttp://doi.org/10.1039/C9TA11285E .
Zhao, J.; Li, Q.; Liu, S.; Cao, Z.; Jiao, X.; Cai, Y. P.; Huang, F . Bithieno[3,4-c]pyrrole-4,6-dione-mediated crystallinity in large-bandgap polymer donors directs charge transportation and recombination in efficient nonfullerene polymer solar cells . ACS Energy Lett. , 2020 . 5 367 -375 . DOI:10.1021/acsenergylett.9b02842http://doi.org/10.1021/acsenergylett.9b02842 .
Yang, C.; Zhang, S.; Ren, J.; Gao, M.; Bi, P.; Ye, L.; Hou, J . Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency . Energy Environ. Sci. , 2020 . 13 2864 -2869 . DOI:10.1039/D0EE01763Ahttp://doi.org/10.1039/D0EE01763A .
Yang, C.; Yu, R.; Liu, C.; Li, H.; Zhang, S.; Hou, J . Achieving over 10% efficiency in poly(3-hexylthiophene)-based organic solar cells via solid additives . ChemSusChem , 2021 . 14 3607 -3613 . DOI:10.1002/cssc.202100627http://doi.org/10.1002/cssc.202100627 .
Liu, X.; Liang, Z.; Du, S.; Tong, J.; Li, J.; Zhang, R.; Shi, X.; Yan, L.; Bao, X.; Xia, Y . Non-halogenated polymer donor-based organic solar cells with a nearly 15% efficiency enabled by a classic ternary strategy . ACS Appl. Energy Mater. , 2021 . 4 1774 -1783 . DOI:10.1021/acsaem.0c02912http://doi.org/10.1021/acsaem.0c02912 .
Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C. H.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; Alamoudi, M.; Laquai, F.; Brabec, C. J.; Salleo, A.; Durrant, J. R.; McCulloch, I . High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor . Nat. Commun. , 2016 . 7 11585 DOI:10.1038/ncomms11585http://doi.org/10.1038/ncomms11585 .
Xu, X.; Zhang, G.; Yu, L.; Li, R.; Peng, Q . P3HT-Based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology . Adv. Mater. , 2019 . 31 1906045 DOI:10.1002/adma.201906045http://doi.org/10.1002/adma.201906045 .
Zhang, B.; Yu, Y.; Liu, Z.; Liu, X.; Duan, C.; Huang, F. Design and synthesis of wide-bandgap conjugated polymers based on 3,4-dicyanothiophene for efficient organic solar cells. Acta Polym. Sin. (in Chinese) 2020, 51, 620-631.
Zhang, Y.; Pan, L.; Peng, Z.; Deng, W.; Zhang, B.; Yuan, X.; Chen, Z.; Ye, L.; Wu, H.; Gao, X.; Liu, Z.; Duan, C.; Huang, F.; Cao, Y . Ternary copolymers containing 3,4-dicyanothiophene for efficient organic solar cells with reduced energy loss . J. Mater. Chem. A , 2021 . 9 13522 -13530 . DOI:10.1039/D1TA03161Ahttp://doi.org/10.1039/D1TA03161A .
Wudarczyk, J.; Papamokos, G.; Margaritis, V.; Schollmeyer, D.; Hinkel, F.; Baumgarten, M.; Floudas, G.; Mullen, K . Hexasubstituted benzenes with ultrastrong dipole moments . Angew. Chem. Int. Ed. , 2016 . 55 3220 -3223 . DOI:10.1002/anie.201508249http://doi.org/10.1002/anie.201508249 .
Liu, X.; Xie, B.; Duan, C.; Wang, Z.; Fan, B.; Zhang, K.; Lin, B.; Colberts, F. J. M.; Ma, W.; Janssen, R. A . J.; Huang, F.; Cao, Y. A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells . J. Mater. Chem. A , 2018 . 6 395 -403 . DOI:10.1039/C7TA10136Hhttp://doi.org/10.1039/C7TA10136H .
Yuan, X.; Zhao, Y.; Zhan, T.; Oh, J.; Zhou, J.; Li, J.; Wang, X.; Wang, Z.; Pang, S.; Cai, P.; Yang, C.; He, Z.; Xie, Z.; Duan, C.; Huang, F.; Cao, Y . A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells . Energy Environ. Sci. , 2021 . 14 5530 -5540 . DOI:10.1039/D1EE01957Khttp://doi.org/10.1039/D1EE01957K .
Riedel, I.; Parisi, J.; Dyakonov, V.; Lutsen, L.; Vanderzande, D.; Hummelen, J. C . Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells . Adv. Funct. Mater. , 2004 . 14 38 -44 . DOI:10.1002/adfm.200304399http://doi.org/10.1002/adfm.200304399 .
Cowan, S. R.; Roy, A.; Heeger, A. J . Recombination in polymer-fullerene bulk heterojunction solar cells . Phys. Rev. B , 2010 . 82 245207 DOI:10.1103/PhysRevB.82.245207http://doi.org/10.1103/PhysRevB.82.245207 .
Mihailetchi, V. D.; Koster, L. J. A.; Hummelen, J. C.; Blom, P. W. M . Photocurrent generation in polymer-fullerene bulk heterojunctions . Phys. Rev. Lett. , 2004 . 93 216601 DOI:10.1103/PhysRevLett.93.216601http://doi.org/10.1103/PhysRevLett.93.216601 .
Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganas, O.; Manca, J. V . On the origin of the open-circuit voltage of polymer-fullerene solar cells . Nat. Mater. , 2009 . 8 904 -909 . DOI:10.1038/nmat2548http://doi.org/10.1038/nmat2548 .
Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganas, O.; Gundogdu, K.; Gao, F.; Yan, H . Fast charge separation in a non-fullerene organic solar cell with a small driving force . Nat. Energy , 2016 . 1 16089 DOI:10.1038/nenergy.2016.89http://doi.org/10.1038/nenergy.2016.89 .
Qian, D.; Zheng, Z.; Yao, H.; Tress, W.; Hopper, T. R.; Chen, S.; Li, S.; Liu, J.; Chen, S.; Zhang, J.; Liu, X. K; Gao, B.; Ouyang, L.; Jin, Y.; Pozina, G.; Buyanova, I. A.; Chen, W. M; Inganas, O.; Coropceanu, V.; Bredas, J. L.; Yan, H.; Hou, J.; Zhang, F.; Bakulin, A. A.; Gao, F . Design rules for minimizing voltage losses in high-efficiency organic solar cells . Nat. Mater. , 2018 . 17 703 -709 . DOI:10.1038/s41563-018-0128-zhttp://doi.org/10.1038/s41563-018-0128-z .
Beiley, Z. M.; Hoke, E. T.; Noriega, R.; Dacuña, J.; Burkhard, G. F.; Bartelt, J. A.; Salleo, A.; Toney, M. F.; McGehee, M. D . Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells . Adv. Energy Mater. , 2011 . 1 954 -962 . DOI:10.1002/aenm.201100204http://doi.org/10.1002/aenm.201100204 .
Heumueller, T.; Burke, T. M.; Mateker, W. R.; Sachs-Quintana, I. T.; Vandewal, K.; Brabec, C. J.; McGehee, M. D . Disorder-induced open-circuit voltage losses in organic solar cells during photoinduced burn-in . Adv. Energy Mater. , 2015 . 5 1500111 DOI:10.1002/aenm.201500111http://doi.org/10.1002/aenm.201500111 .
Heumueller, T.; Mateker, W. R.; Distler, A.; Fritze, U. F.; Cheacharoen, R.; Nguyen, W. H.; Biele, M.; Salvador, M.; von Delius, M.; Egelhaaf, H. J.; McGehee, M. D.; Brabec, C. J . Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability . Energy Environ. Sci. , 2016 . 9 247 -256 . DOI:10.1039/C5EE02912Khttp://doi.org/10.1039/C5EE02912K .
Cha, H.; Wu, J.; Wadsworth, A.; Nagitta, J.; Limbu, S.; Pont, S.; Li, Z.; Searle, J.; Wyatt, M. F.; Baran, D.; Kim, J. S.; McCulloch, I.; Durrant, J. R . An efficient, "burn in" free organic solar cell employing a nonfullerene electron acceptor . Adv. Mater. , 2017 . 29 1701156 DOI:10.1002/adma.201701156http://doi.org/10.1002/adma.201701156 .
0
浏览量
11
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构