a.School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
b.Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
sanyenan@163.com (N.Z.)
yongwang1976@swjtu.edu.cn (Y.W.)
Scan for full text
De-Xiang Sun, Xiao-Lei Liao, Nan Zhang, 等. Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment[J]. Chinese Journal of Polymer Science, 2022,40(7):738-753.
De-Xiang Sun, Xiao-Lei Liao, Nan Zhang, et al. Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment[J]. Chinese Journal of Polymer Science, 2022,40(7):738-753.
De-Xiang Sun, Xiao-Lei Liao, Nan Zhang, 等. Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment[J]. Chinese Journal of Polymer Science, 2022,40(7):738-753. DOI: 10.1007/s10118-022-2714-4.
De-Xiang Sun, Xiao-Lei Liao, Nan Zhang, et al. Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment[J]. Chinese Journal of Polymer Science, 2022,40(7):738-753. DOI: 10.1007/s10118-022-2714-4.
The fibrous membranes exhibited switchable superhydrophilicity and superlipophilicity characteristics, excellent adsorption abilities toward organic dyes, heavy metal ions, and oils. Specifically, the membrane could rapidly remove the trace MB when water flowed through the membrane. The membrane also exhibited excellent sterilization performances and light-to-heat conversion ability.
Polymeric membranes with the integration of various functional performances toward wastewater treatment are urgently required. However, most of the polymeric membranes only exhibit a single function of highly efficiently removing one kind of pollutants. In this work, a biomimetic modification method was introduced to tailor the chemical and topological structure of the porous poly(vinylidene fluoride) (PVDF) fibers prepared by electrospinning. The polydopamine (PDA) nanoparticles were homogeneously introduced onto the surface of PVDF porous fibers ,via, precisely tailoring the concentration of dopamine, which endowed the fibers with more polar groups and bigger roughness but did not destroy the crystalline structures. The fibrous membranes exhibited switchable superhydrophilicity and superlipophilicity characteristics, excellent adsorption abilities toward organic dyes, heavy metal ions and oils. The highest adsorption capacities achieved 917.4 mg/g toward methylene blue (MB), 42.6 mg/g toward Cr(VI) and 74.6 g/g toward silicone oil, respectively. Specifically, the membrane could rapidly remove the trace MB when water flowed through the membrane. The membrane also exhibited excellent sterilization performances, and the bacterial eliminating rate achieved 99.9% for the ,E. coli, and ,S. aureus., The excellent light-to-heat conversion ability endowed the membrane with the self-heating ability, furtherly intensifying the wastewater treatment efficiency. This work confirms that the PDA nanoparticles-decorated PVDF porous fibers might be the new generation adsorbents used in wastewater treatment.
Poly(vinylidene fluoride) porous fibersBiomimetic modificationAdsorptionOil/water treatmentAntimicrobial performance
Petrie, B.; Barden, R.; Hordern, B. K . A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring . Water Res. , 2015 . 72 3 -27 . DOI:10.1016/j.watres.2014.08.053http://doi.org/10.1016/j.watres.2014.08.053 .
Yap, P. L.; Nine, M. J.; Hassan, K.; Tung, T. T.; Tran, D. N. H.; Losic D . Graphene-based sorbents for multipollutants removal in water: a review of recent progress . Adv. Funct. Mater. , 2021 . 31 2007356 DOI:10.1002/adfm.202007356http://doi.org/10.1002/adfm.202007356 .
Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S. K.; Grace, A. N.; Bhatnagar, A . Role of nanomaterials in water treatment applications: a review . Chem. Eng. J. , 2016 . 306 1116 -1137 . DOI:10.1016/j.cej.2016.08.053http://doi.org/10.1016/j.cej.2016.08.053 .
Gupta, V. K.; Suhas . Application of low-cost adsorbents for dye removal–a review . J. Environ. Manage. , 2009 . 90 2313 -2342 . DOI:10.1016/j.jenvman.2008.11.017http://doi.org/10.1016/j.jenvman.2008.11.017 .
Li, J. J.; Zhou, Y. N.; Luo, Z. H . Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review . Prog. Polym. Sci. , 2018 . 87 1 -33 . DOI:10.1016/j.progpolymsci.2018.06.009http://doi.org/10.1016/j.progpolymsci.2018.06.009 .
Smith, S. C.; Rodrigues, D. F . Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications . Carbon , 2015 . 91 122 -143 . DOI:10.1016/j.carbon.2015.04.043http://doi.org/10.1016/j.carbon.2015.04.043 .
Pendergast, M. M.; Hoek, E. M. V . A Review of water treatment membrane nanotechnologies . Energy Environ. Sci. , 2011 . 4 1946 -1971 . DOI:10.1039/c0ee00541jhttp://doi.org/10.1039/c0ee00541j .
Zhang, J. C.; Zhang, F.; Song, J.; Liu, L. F.; Si, Y.; Yu, J. Y.; Ding, B . Electrospun flexible nanofibrous membranes for oil/water separation . J. Mater. Chem. A , 2019 . 7 20075 -20102 . DOI:10.1039/C9TA07296Ahttp://doi.org/10.1039/C9TA07296A .
Zhang, W. B.; Zhu, Y. Z.; Liu, X.; Wang, D.; Li, J . Y.; Jiang, L.; Jin, J. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions . Angew. Chem. Int. Ed. , 2014 . 53 856 -860 . DOI:10.1002/anie.201308183http://doi.org/10.1002/anie.201308183 .
Tao, M. M.; Xue, L . X.; Liu, F.; Jiang, L. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation . Adv. Mater. , 2014 . 26 2943 -2948 . DOI:10.1002/adma.201305112http://doi.org/10.1002/adma.201305112 .
Zhu, Y. Z.; Wang, Z. L.; Zhang, F.; Gao, S. J.; Wang, A. Q.; Fang, W. X.; Jin, J . Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation . Adv. Funct. Mater. , 2018 . 28 1804121 DOI:10.1002/adfm.201804121http://doi.org/10.1002/adfm.201804121 .
Cui, Z. L.; Hassankiadeh, N. T.; Lee, S. Y.; Lee, J. M.; Woo, K. T.; Sanguineti, A.; Arcella, V.; Arcella, Y. M.; Arcella, E . Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation . J. Membr. Sci. , 2013 . 444 223 -236 . DOI:10.1016/j.memsci.2013.05.031http://doi.org/10.1016/j.memsci.2013.05.031 .
Thankamony, R. L.; Li, X.; Fan, X. L.; Sheng, G.; Wang, X. B.; Sun, S. Y.; Zhang, X. X.; Lai, Z. P . Preparation of highly porous polymer membranes with hierarchical porous structures via spinodal decomposition of mixed solvents with UCST phase behavior . ACS Appl. Mater. Interfaces , 2018 . 10 44041 -44049 . DOI:10.1021/acsami.8b16120http://doi.org/10.1021/acsami.8b16120 .
Cai, Q.; Xu, R. J.; Wu, S. Q.; Chen, C. B.; Mo, H. B.; Lei, C. H.; Li, L. B.; Li, Z. H . Influence of annealing temperatureon the lamellar and connecting bridgestructure of stretched polypropylene microporous membrane . Polym. Int. , 2015 . 64 446 -452 . DOI:10.1002/pi.4828http://doi.org/10.1002/pi.4828 .
Liu, Z. J.; Wang, H. Y.; Wang, E. Q.; Zhang, X. G.; Yuan, R. X.; Zhu, Y. J . Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning . Polymer , 2016 . 82 105 -113 . DOI:10.1016/j.polymer.2015.11.045http://doi.org/10.1016/j.polymer.2015.11.045 .
Jiang, J. H.; Zhu, L. P.; Zhang, H. T.; Zhu, B. K.; Xu, Y. Y . Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives . J. Membr. Sci. , 2014 . 457 73 -81 . DOI:10.1016/j.memsci.2014.01.043http://doi.org/10.1016/j.memsci.2014.01.043 .
Baqeri, M.; Abolhasani, M. M.; Mozdianfard, M. R.; Guo, Q . P.; Oroumei, A.; Naebe, M. Influence of processing conditions on polymorphic behavior, crystallinity, and morphology of electrospun poly(vinylidene fluoride) nanofibers . J. Appl. Polym. Sci. , 2015 . 132 42304 .
Na, H. N.; Chen, P.; Wong, S . C.; Hague, S.; Li, Q. Fabrication of PVDF/PVA microtubules by coaxial electrospinning . Polymer , 2012 . 53 2736 -2743 . DOI:10.1016/j.polymer.2012.04.021http://doi.org/10.1016/j.polymer.2012.04.021 .
Leaper, S.; Cáceres, E. O. A.; Luque-Alled, J. M.; Cartmell, S. H.; Gorgojo, P . POSS-functionalized graphene oxide/PVDF electrospun membranes for complete arsenic removal using membrane distillation . ACS Appl. Polym. Mater. , 2021 . 3 (4 ):1854 -1865 . DOI:10.1021/acsapm.0c01402http://doi.org/10.1021/acsapm.0c01402 .
Jang, W. G.; Yun, J . H.; Jeon, K.; Byun, H. PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications . RSC Adv. , 2015 . 5 46711 -46717 . DOI:10.1039/C5RA04439Ahttp://doi.org/10.1039/C5RA04439A .
Ma, F. F.; Zhang, N.; Wei, X.; Yang, J. H.; Wang, Y.; Zhou, Z. W . Blend-electrospun poly(vinylidene fluoride)/polydopamine membranes: self-polymerization of dopamine and the excellent adsorption/separation abilities . J. Mater. Chem. A , 2017 . 5 14430 -14443 . DOI:10.1039/C7TA02845Hhttp://doi.org/10.1039/C7TA02845H .
Zhang, W . B.; Shi, Z.; Zhang, F.; Liu, X.; Jin, J.; Jiang, L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux . Adv. Mater. , 2013 . 25 2071 -2076 . DOI:10.1002/adma.201204520http://doi.org/10.1002/adma.201204520 .
Ren, Y.; Ma, Y.; Min, G.; Zhang, W.; Lv, L.; Zhang, W . A mini review of multifunctional ultrafiltration membranes for wastewater decontamination: additional functions of adsorption and catalytic oxidation . Sci. Total Environ. , 2021 . 762 143083 DOI:10.1016/j.scitotenv.2020.143083http://doi.org/10.1016/j.scitotenv.2020.143083 .
Zhang, P. F.; Liu, W.; Rajabzadeh, S.; Jia, Y. D.; Shen, Q.; Fang, C . J.; Kato, N.; Matsuyama, H. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties . J. Membr. Sci. , 2021 . 636 119596 DOI:10.1016/j.memsci.2021.119596http://doi.org/10.1016/j.memsci.2021.119596 .
Liu, G. L.; Tsen, W. C.; Jang, S. C.; Hu, F. Q.; Zhong, F.; Liu, H.; Wang, G. J.; Wen, S.; Zheng, G. W.; Gong, C. L . Mechanically robust and highly methanol-resistant sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) nanofiber composite membranes for direct methanol fuel cells . J. Membr. Sci. , 2019 . 591 117321 DOI:10.1016/j.memsci.2019.117321http://doi.org/10.1016/j.memsci.2019.117321 .
Gong, C. L.; Liu, H.; Zhang, B. Q.; Wang, G. J.; Cheng, F.; Zheng, G. W.; Wen, S.; Xue, Z. G.; Xie, X. L . High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes . J. Membr. Sci. , 2017 . 535 113 -121 . DOI:10.1016/j.memsci.2017.04.037http://doi.org/10.1016/j.memsci.2017.04.037 .
Chew, M. G. P.; Zhang, Y. J.; Goh, K. L.; Ho, J . S.; Xu, R.; Wang, R. Hierarchically structured janus membrane surfaces for enhanced membrane distillation performance . ACS Appl. Mater. Interfaces , 2019 . 11 25524 -25534 . DOI:10.1021/acsami.9b05967http://doi.org/10.1021/acsami.9b05967 .
Liu, G. L.; Tsen, W. C.; Jang, S. C.; Hu, F. Q.; Zhong, F.; Zhang, B. Q.; Wang, J.; Liu, H.; Wang, G. J.; Wen, S.; Gong, C. L . Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells . J. Membr. Sci. , 2020 . 611 118242 DOI:10.1016/j.memsci.2020.118242http://doi.org/10.1016/j.memsci.2020.118242 .
Su, Y. J.; Chen, C. X.; Pan, H.; Yang, Y.; Chen, G. R.; Zhao, X.; Liu, W. X.; Gong, Q. C.; Xie, G. Z.; Zhou, Y. H.; Zhang, S. L.; Tai, H. L.; Jiang, Y. D.; Chen, J . Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring . Adv. Funct. Mater. , 2021 . 31 2010962 DOI:10.1002/adfm.202010962http://doi.org/10.1002/adfm.202010962 .
Guan, X. Y.; Xu, B. G.; Gong, J. L . Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors . Nano Energy , 2020 . 70 104516 DOI:10.1016/j.nanoen.2020.104516http://doi.org/10.1016/j.nanoen.2020.104516 .
Chen, Q. T.; Yang, B.; Ding, M. Y.; Pan, Y.; Qian, J. S.; Zheng, Z. Z.; Wu, B.; Miao, J. B.; Xia, R.; Tu, Y. L.; Shi, Y . Enhanced physical, mechanical and protein adsorption properties of PVDF composite films prepared via thermally-induced phase separation (TIPS): effect of SiO2@PDA nanoparticles . Eur. Polym. J. , 2020 . 140 110039 DOI:10.1016/j.eurpolymj.2020.110039http://doi.org/10.1016/j.eurpolymj.2020.110039 .
Chi, Q. G.; Ma, T.; Zhang, Y.; Chen, Q. G.; Zhang, C. H.; Cui, Y.; Zhang, T. D.; Lin, J. Q.; Wang, X.; Lei, Q. Q . Excellent energy storage of sandwich-structured PVDF-based composite at low electric field by introduction of the hybrid CoFe2O4@BZT–BCT nanofibers . ACS Sustain. Chem. Eng. , 2018 . 6 403 -412 . DOI:10.1021/acssuschemeng.7b02659http://doi.org/10.1021/acssuschemeng.7b02659 .
Chew, N. G. P.; Zhao, S . S.; Malde, C.; Wang, R. Polyvinylidene fluoride membrane modification via oxidant-induced dopamine polymerization for sustainable direct-contact membrane distillation . J. Membr. Sci. , 2018 . 563 31 -42 . DOI:10.1016/j.memsci.2018.05.035http://doi.org/10.1016/j.memsci.2018.05.035 .
Luo, C. D.; Liu, Q. X . Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation . ACS Appl. Mater. Interfaces , 2017 . 9 8297 -8307 . DOI:10.1021/acsami.6b16206http://doi.org/10.1021/acsami.6b16206 .
Wu, C. L.; Wang, H. Y.; Wei, Z.; Li, C.; Luo, Z. D . Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: preparation, characterization and their adsorption properties towards heavy metal ions . Appl. Surf. Sci. , 2015 . 346 207 -215 . DOI:10.1016/j.apsusc.2015.04.001http://doi.org/10.1016/j.apsusc.2015.04.001 .
Liu, Q.; Huang, B. X.; Huang, A. S . Polydopamine-based superhydrophobic membranes for biofuel recovery . J. Mater. Chem. A , 2013 . 1 11970 -11974 . DOI:10.1039/c3ta12001ehttp://doi.org/10.1039/c3ta12001e .
Liao, X. L.; Sun, D. X.; Cao, S.; Zhang, N.; Huang, T.; Lei, Y. Z.; Wang, Y . Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation . J. Hazard. Mater. , 2021 . 416 125926 DOI:10.1016/j.jhazmat.2021.125926http://doi.org/10.1016/j.jhazmat.2021.125926 .
Wei, X.; Huang, T.; Nie, J.; Yang, J. H.; Qi, X. D.; Zhou, Z. W.; Wang, Y . Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes . Carbohydr. Polym. , 2018 . 198 546 -555 . DOI:10.1016/j.carbpol.2018.06.112http://doi.org/10.1016/j.carbpol.2018.06.112 .
Wang, N.; Wang, Y. B.; Shang, B.; Wen, P. H.; Peng, B.; Deng, Z. W . Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation . J. Colloid Interface Sci. , 2018 . 531 300 -310 . DOI:10.1016/j.jcis.2018.07.056http://doi.org/10.1016/j.jcis.2018.07.056 .
Qiu, L.; Sun, Y. H.; Guo, Z. G . Designing novel superwetting surfaces for high-efficiency oil—water separation: design principles, opportunities, trends and challenges . J. Mater. Chem. A , 2020 . 8 16831 -16853 . DOI:10.1039/D0TA02997Ahttp://doi.org/10.1039/D0TA02997A .
Lee, H . A.; Park, E.; Lee, H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST . Adv. Mater. , 2020 . 32 1907505 DOI:10.1002/adma.201907505http://doi.org/10.1002/adma.201907505 .
Zhao, D.; Kim, F. J.; Ignacz, G.; Pogany, P.; Lee, Y. M.; Szekely, G . Bio-inspired robust membranes nanoengineered from interpenetrating polymer networks of polybenzimidazole/polydopamine . ACS Nano , 2019 . 13 125 -133 . DOI:10.1021/acsnano.8b04123http://doi.org/10.1021/acsnano.8b04123 .
Cui, Z. L.; Hassankiadeh, N. T.; Zhuang, Y. B.; Drioli, E.; Lee, Y. M . Crystalline polymorphism in poly(vinylidenefluoride) membranes . Prog. Polym. Sci. , 2015 . 51 94 -126 . DOI:10.1016/j.progpolymsci.2015.07.007http://doi.org/10.1016/j.progpolymsci.2015.07.007 .
Zhao, X.; Chen, S.; Zhang, J.; Zhang, W.; Wang, X . Crystallization of PVDF in the PVDF/PMMA blends precipitated from their non-solvents: special ‘‘orientation’’ behavior, morphology, and thermal properties . J. Cryst. Growth , 2011 . 328 74 -80 . DOI:10.1016/j.jcrysgro.2011.06.036http://doi.org/10.1016/j.jcrysgro.2011.06.036 .
Xu, X. L.; Yang, C. J.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z. W . Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide . Composites, Part B , 2017 . 109 91 -100 . DOI:10.1016/j.compositesb.2016.10.056http://doi.org/10.1016/j.compositesb.2016.10.056 .
Wang, S.; Du, X. S.; Deng, S.; Fu, X. H.; Do, Z. L.; Cheng, X.; Wang, H. B . A Polydopamine-bridged hierarchical design for fabricating flame-retarded, superhydrophobic, and durable cotton fabric . Cellulose , 2019 . 26 7009 -7023 . DOI:10.1007/s10570-019-02586-8http://doi.org/10.1007/s10570-019-02586-8 .
Ryu, J. H.; Messersmith, P. B.; Lee, H . Polydopamine surface chemistry: a decade of discovery . ACS Appl. Mater. Interfaces , 2018 . 10 7523 -7540 . DOI:10.1021/acsami.7b19865http://doi.org/10.1021/acsami.7b19865 .
Zhu, J. M.; Ji, X. Y.; Yin, M.; Guo, S. Y.; Shen, J. B . Poly (vinylidene fluoride) based percolative dielectrics with tunable coating of polydopamine on carbon nanotubes: toward high permittivity and low dielectric loss . Compos. Sci. Technol. , 2017 . 144 79 -88 . DOI:10.1016/j.compscitech.2017.03.017http://doi.org/10.1016/j.compscitech.2017.03.017 .
Jia, S. Y.; Tang, D. Y.; Zhou, Y. H.; Du, Y. C.; Peng, J.; Sun, Z. J.; Yang, X . Polydopamine microsphere-incorporated electrospun fibers as novel adsorbents for dual-responsive adsorption of methylene blue . ACS Appl. Mater. Interfaces , 2020 . 12 49723 -49736 . DOI:10.1021/acsami.0c15638http://doi.org/10.1021/acsami.0c15638 .
Jain, R.; Sikarwar, S . Adsorptive and desorption studies on toxic dye erioglaucine over deoiled mustard . J. Dispersion Sci. Technol. , 2010 . 31 883 -893 . DOI:10.1080/01932690903223872http://doi.org/10.1080/01932690903223872 .
Ho, Y. S.; McKay, G . Pseudo-second order model for sorption processes . Process Biochem. , 1999 . 34 451 -465 . DOI:10.1016/S0032-9592(98)00112-5http://doi.org/10.1016/S0032-9592(98)00112-5 .
Langmuir, I . The constitution and fundamental properties of solids and liquids . J. Franklin Inst. , 1917 . 183 102 -105 . DOI:10.1016/S0016-0032(17)90938-Xhttp://doi.org/10.1016/S0016-0032(17)90938-X .
Freundlich, H.; Hatfield, H. S. Colloid and capillary chemistry, Methuen and Co. Ltd. London, U.K., 1926.
Ma, F . F.; Zhang, D.; Huang, T.; Zhang, N.; Wang, Y. Ultrasonication-assisted deposition of graphene oxide on electrospun poly(vinylidene fluoride) membrane and the adsorption behavior . Chem. Eng. J. , 2019 . 358 1065 -1073 . DOI:10.1016/j.cej.2018.10.121http://doi.org/10.1016/j.cej.2018.10.121 .
Jun, L. Y.; Karri, R. R.; Mubarak, N. M.; Yon, L. S.; Bing, C. H.; Khalid, M.; Jagadish, P.; Abdullah, E. C . Modelling of methylene blue adsorption using peroxidase immobilized functionalized buckypaper/polyvinyl alcohol membrane via ant colony optimization . Environ. Pollut. , 2020 . 259 113940 DOI:10.1016/j.envpol.2020.113940http://doi.org/10.1016/j.envpol.2020.113940 .
Sabarish, R.; Unnikrishnan, G . Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications . Carbohydr. Polym. , 2018 . 199 129 -140 . DOI:10.1016/j.carbpol.2018.06.123http://doi.org/10.1016/j.carbpol.2018.06.123 .
Yang, Y.; Xiong, Z.; Wang, Z.; Liu, Y.; He, Z. J.; Cao, A. K.; Zhou, L.; Zhu, L. J.; Zhao, S. F . Super-adsorptive and photo-regenerable carbon nanotube based membrane for highly efficient water purification . J. Membr. Sci. , 2021 . 621 119000 DOI:10.1016/j.memsci.2020.119000http://doi.org/10.1016/j.memsci.2020.119000 .
Cheng, J. Q.; Zhan, C. H.; Wu, J. H.; Cui, Z. X.; Si, J. H.; Wang, Q. T.; Peng, X. F.; Turng, L. S . Highly efficient removal of methylene blue dye from an aqueous solution using cellulose acetate nanofibrous membranes modified by polydopamine . ACS Omega , 2020 . 5 5389 -5400 . DOI:10.1021/acsomega.9b04425http://doi.org/10.1021/acsomega.9b04425 .
Aluigi, A.; Rombaldoni, F.; Tonetti, C.; Jannoke, L . Study of methylene blue adsorption on keratin nanofibrous membranes . J. Hazard. Mater. , 2014 . 268 156 -165 . DOI:10.1016/j.jhazmat.2014.01.012http://doi.org/10.1016/j.jhazmat.2014.01.012 .
Zulfikar, M . A.; Maulina, D.; Nasir, M.; Handayani, N.; Handajani, M. Removal of methylene blue from aqueous solution using poly(acrylic acid)/SiO2 and functionalized poly(acrylic acid)/SiO2 composite nanofibers . Environ. Nanotechnol. Monit. Manage. , 2020 . 14 100381 .
Zhao, R.; Wang, Y.; Li, X.; Sun, B. L.; Wang, C . Synthesis of β-cyclodextrin-based electrospun nanofiber membranes for highly efficient adsorption and separation of methylene blue . ACS Appl. Mater. Interfaces , 2015 . 7 26649 -26657 . DOI:10.1021/acsami.5b08403http://doi.org/10.1021/acsami.5b08403 .
Shan, H. R.; Wang, X. Q.; Shi, F. H.; Yan, J. H.; Yu, J. Y.; Ding, B . Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration . ACS Appl. Mater. Interfaces , 2017 . 9 18966 -18976 . DOI:10.1021/acsami.7b04518http://doi.org/10.1021/acsami.7b04518 .
Cao, S.; Hu, S. Z.; Luo, D.; Huang, T.; Zhang, N.; Lei, Y. Z.; Wang, Y . Bio-inspired one-step structure adjustment and chemical modification of melamine foam toward highly efficient removal of hexavalent chromium ions . Sep. Purif. Technol. , 2021 . 275 119257 DOI:10.1016/j.seppur.2021.119257http://doi.org/10.1016/j.seppur.2021.119257 .
Wasim, M.; Sagar, S.; Sabir, A.; Shafiq, M.; Jamil, T. . Decoration of open pore network in polyvinylidene fluoride/MWCNTs with chitosan for the removal of reactive orange 16 dye . Carbohydr. Polym. , 2017 . 174 474 -483 . DOI:10.1016/j.carbpol.2017.06.086http://doi.org/10.1016/j.carbpol.2017.06.086 .
Pietrucci, F.; Boero, M.; Andreoni, W . How natural materials remove heavy metals from water: mechanistic insights from molecular dynamics simulations . Chem. Sci. , 2021 . 12 2979 -2985 . DOI:10.1039/D0SC06204Ahttp://doi.org/10.1039/D0SC06204A .
Zhu, W. J.; Dang, Q. F.; Liu, C. S.; Yu, D. J.; Chang, G. Z.; Pu, X. Y.; Wang, Q. Q.; Sun, H. T.; Zhang, B. N.; Cha, D. S . Cr(VI) and Pb(II) capture on pH-responsive polyethyleneimine and chloroacetic acid functionalized chitosan microspheres . Carbohydr. Polym. , 2019 . 219 353 -367 . DOI:10.1016/j.carbpol.2019.05.046http://doi.org/10.1016/j.carbpol.2019.05.046 .
Zhang, Y.; Yin, X. Y.; Yu, B.; Wang, X. L.; Guo, Q. Q.; Yang, J . Recyclable polydopamine-functionalized sponge for high-efficiency clean water generation with dual-purpose solar evaporation and contaminant adsorption . ACS Appl. Mater. Interfaces , 2019 . 11 32559 -32568 . DOI:10.1021/acsami.9b10076http://doi.org/10.1021/acsami.9b10076 .
Zhang, N.; Qi, Y. F.; Zhang, Y. N.; Luo, J . L.; Cui, P.; Jiang, W. A review on oil/water mixture separation material . Ind. Eng. Chem. Res. , 2020 . 59 14546 -14568 . DOI:10.1021/acs.iecr.0c02524http://doi.org/10.1021/acs.iecr.0c02524 .
Zhang, D.; Jin, X. Z.; Huang, T.; Zhang, N.; Qi, X. D.; Yang, J. H.; Zhou, Z. W.; Wang, Y . Electrospun fibrous membranes with dual-scaled porous structure: super hydrophobicity, super lipophilicity, excellent water adhesion, and anti-icing for highly efficient oil adsorption/separation . ACS Appl. Mater. Interfaces , 2019 . 11 5073 -5083 . DOI:10.1021/acsami.8b19523http://doi.org/10.1021/acsami.8b19523 .
Wu, J.; Wang, N.; Zhao, Y.; Jiang, L . Simple synthesis of smart magnetically driven fibrous films for remote controllable oil removal . Nanoscale , 2015 . 7 2625 -2632 . DOI:10.1039/C4NR05721Jhttp://doi.org/10.1039/C4NR05721J .
Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Y . Controlling the secondary surface morphology of electrospun PVDF nanofibers by regulating the solvent and relative humidity . Nanoscale Res. Lett. , 2018 . 13 285 DOI:10.1186/s11671-018-2705-0http://doi.org/10.1186/s11671-018-2705-0 .
Gu, J. C.; Xiao, P.; Chen, P.; Zhang, L.; Wang, H. L.; Dai, L. W.; Song, L. P.; Huang, Y. J.; Zhang, J. W.; Chen, T . Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation . ACS Appl. Mater. Interfaces , 2017 . 9 5968 -5973 . DOI:10.1021/acsami.6b13547http://doi.org/10.1021/acsami.6b13547 .
Pan, Y. Y.; Li, R. S.; Li, P. H.; Wang, Y.; Zhu, Y. L.; Xu, Z. Q.; Chen, X. Q.; Sun, Z. G.; Li, C.; Jiang, B. B . Facile fabrication of flexible, large-sized organic nanoporous membrane by electrospinning technique based on microporous polymer nanoparticles . Microporous Mesoporous Mater. , 2021 . 317 110955 DOI:10.1016/j.micromeso.2021.110955http://doi.org/10.1016/j.micromeso.2021.110955 .
Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L . Electrospun porous structure fibrous film with high oil adsorption capacity . ACS Appl. Mater. Interfaces , 2012 . 4 3207 -3212 . DOI:10.1021/am300544dhttp://doi.org/10.1021/am300544d .
Kollarigowda, R. H.; Abraham, S.; Montemagno, C. D . Antifouling cellulose hybrid biomembrane for effective oil/water separation . ACS Appl. Mater. Interfaces , 2017 . 9 29812 -29819 . DOI:10.1021/acsami.7b09087http://doi.org/10.1021/acsami.7b09087 .
Fu, Y.; Yang, L.; Zhang, J. H.; Hu, J. F.; Duan, G. G.; Liu, X. H.; Li, Y. W.; Gu, Z. P . Polydopamine antibacterial materials . Mater. Horiz. , 2021 . 8 1618 -1633 . DOI:10.1039/D0MH01985Bhttp://doi.org/10.1039/D0MH01985B .
Iqbal, Z.; Lai, E. P. C.; Avis, T. J . Antimicrobial effect of polydopamine coating on escherichia coli . J. Mater. Chem. , 2012 . 22 21608 -21612 . DOI:10.1039/c2jm34825jhttp://doi.org/10.1039/c2jm34825j .
Liu, H.; Qu, X.; Tan, H. Q.; Song, J. L.; Lei, M.; Kim, E.; Payne, G. F.; Liu, C. S . Role of polydopamine’s redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities . Acta Biomater. , 2019 . 88 181 -196 . DOI:10.1016/j.actbio.2019.02.032http://doi.org/10.1016/j.actbio.2019.02.032 .
Dai, Y.; Yang, D. P.; Yu, D. P.; Cao, C.; Wang, Q. H.; Xie, S. H.; Shen, L.; Feng, W.; Li, F. Y . Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy . ACS Appl. Mater. Interfaces , 2017 . 9 26674 -26683 . DOI:10.1021/acsami.7b06109http://doi.org/10.1021/acsami.7b06109 .
Wagner, A. B . Bacterial food poisoning . Texas Agric. Ext. Publication , 1989 . 1540 1 -6. .
0
浏览量
14
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构