a.College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
b.State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
lijuan_zhao@sicnu.edu.cn
Scan for full text
Xiao-Tian Xi, Xing-Qi Luo, Yu Xia, 等. Ice Crystal Growth Mechanism and Structure-activity Relationships of Graphene Oxide/Poly(vinyl alcohol) Aerogels[J]. Chinese Journal of Polymer Science, 2022,40(7):772-780.
Xiao-Tian Xi, Xing-Qi Luo, Yu Xia, et al. Ice Crystal Growth Mechanism and Structure-activity Relationships of Graphene Oxide/Poly(vinyl alcohol) Aerogels[J]. Chinese Journal of Polymer Science, 2022,40(7):772-780.
Xiao-Tian Xi, Xing-Qi Luo, Yu Xia, 等. Ice Crystal Growth Mechanism and Structure-activity Relationships of Graphene Oxide/Poly(vinyl alcohol) Aerogels[J]. Chinese Journal of Polymer Science, 2022,40(7):772-780. DOI: 10.1007/s10118-022-2707-3.
Xiao-Tian Xi, Xing-Qi Luo, Yu Xia, et al. Ice Crystal Growth Mechanism and Structure-activity Relationships of Graphene Oxide/Poly(vinyl alcohol) Aerogels[J]. Chinese Journal of Polymer Science, 2022,40(7):772-780. DOI: 10.1007/s10118-022-2707-3.
By employing graphene oxide (GO) as the aerogel skeleton and utilizing polyvinyl alcohol (PVA) to regulate the ice crystal growth, we elucidate the relationships between the physicochemical properties of GO/PVA aerogel precursors, the nucleation and growth of ice crystals, and aerogel structure by using an ice-templating method.
Aerogels are special porous materials with low thermal conductivity, light weight, high energy absorption rate and large surface area, which have been applied in many fields. However, controlling the aerogel microstructure remains an academic challenge. Herein, by employing graphene oxide (GO) as the aerogel skeleton and utilizing poly(vinyl alcohol) (PVA) to regulate the ice crystal growth, we elucidate the relationships between the physicochemical properties of GO/PVA aerogel precursors and the nucleation and growth of ice crystals by using an ice-templating method. We demonstrate that due to the hydrogen bond formed between PVA and water molecules, resulting in the initial crystallization temperature being reduced from −12.60 °C (GO/PVA-0.01) to −16.21 °C (GO/PVA-0.1). Meanwhile, the strong hydrogen bond between PVA and GO limits the diffusion of water molecules, thereby inhibiting the growth of ice crystals, decreasing the pore size of the GO/PVA aerogel from 9.96 nm (GO/PVA-0.01) to 7.19 nm (GO/PVA-0.3), and thus the compressive strength of the aerogel increases from 0.045 MPa to 0.13 MPa. Overall, the finding of this study can be extended to other aerogel precursors, and exhibit important scientific value and practical significance for the preparation of aerogel materials with highly controllable structures and performances.
AerogelGO/PVAIce crystal growthStructure-activity relationships
Zhu, Y.; Zhang, X.; Lan, Z.; Li, H.; Zhang, X.; Li, Q . Hydrogen bonding directed assembly of simonkolleite aerogel by a sol-gel approach . Mater. Design , 2016 . 93 503 -508 . DOI:10.1016/j.matdes.2016.01.002http://doi.org/10.1016/j.matdes.2016.01.002 .
Ren, H.; Zhu, J.; Bi, Y.; Xu, Y.; Lin, Z . Facile fabrication of mechanical monolithic polyamide aerogels via a modified sol-gel method . J. Sol-Gel Sci. Technol. , 2017 . 82 417 -423 . DOI:10.1007/s10971-017-4315-1http://doi.org/10.1007/s10971-017-4315-1 .
Jakus, A. E.; Shah, R. N . Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering . J. Biomed. Mater. Res. A , 2017 . 105 274 -283 . DOI:10.1002/jbm.a.35684http://doi.org/10.1002/jbm.a.35684 .
Halloran; J. Materials science . Making better ceramic composites with ice . Science , 2006 . 311 479 -480 . DOI:10.1126/science.1123220http://doi.org/10.1126/science.1123220 .
Hu, H.; Zhao, Z.; Wan, W.; Gogotsi, Y.; Qiu, J . Ultralight and highly compressible graphene aerogels . Adv. Mater. , 2013 . 25 2219 -2223 . DOI:10.1002/adma.201204530http://doi.org/10.1002/adma.201204530 .
Yang, M.; Zhao, N.; Cui, Y.; Gao, W.; Zhao, Q.; Gao, C.; Bai, H.; Xie, T . Biomimetic architectured graphene aerogel with exceptional strength and resilience . ACS nano , 2017 . 11 6817 -6824 . DOI:10.1021/acsnano.7b01815http://doi.org/10.1021/acsnano.7b01815 .
Berglund, L.; Nissilä, T.; Sivaraman, D.; Komulainen, S.; Telkki, V. V.; Oksman, K . Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications . ACS Appl. Mater. Interfaces , 2021 . 13 34899 -34909 . DOI:10.1021/acsami.1c07954http://doi.org/10.1021/acsami.1c07954 .
Han, K.; Meng, J.; Hong, X.; Wang, X.; Mai, L . Three-dimensional graphene-supported nickel disulfide nanoparticles promise stable and fast potassium storage . Nanoscale , 2020 . 12 8255 -8261 . DOI:10.1039/D0NR01274Bhttp://doi.org/10.1039/D0NR01274B .
Yang, J. Y.; Xia, Y.; Zhao, J.; Yi, L. F.; Song, Y. J.; Wu, H.; Guo, S. Y.; Zhao, L. J.; Wu, J. R . Flame-retardant and self-healing biomass aerogels based on electrostatic assembly . Chinese J. Polym. Sci. , 2020 . 38 1294 -1304 . DOI:10.1007/s10118-020-2444-4http://doi.org/10.1007/s10118-020-2444-4 .
Wu, J.; Zhao, Q.; Liang, C.; Xie, T . Enzymatically degradable oxidized dextran-chitosan hydrogels with an anisotropic aligned porous structure . Soft Matter , 2013 . 9 11136 DOI:10.1039/c3sm52070fhttp://doi.org/10.1039/c3sm52070f .
Zhang, X.; Yu, Y.; Jiang, Z.; Wang, H . The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel . J. Wood Sci. , 2015 . 61 595 -601 . DOI:10.1007/s10086-015-1514-7http://doi.org/10.1007/s10086-015-1514-7 .
Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T . Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors . Carbon , 2000 . 38 1099 -1105 . DOI:10.1016/S0008-6223(99)00235-3http://doi.org/10.1016/S0008-6223(99)00235-3 .
Li, W. L.; Lu, K.; Walz, J. Y . Freeze casting of porous materials: review of critical factors in microstructure evolution . Int. Mater. Rev. , 2012 . 57 37 -60 . DOI:10.1179/1743280411Y.0000000011http://doi.org/10.1179/1743280411Y.0000000011 .
Yang, X. H.; Yao, Y. Q.; Huang, M. H.; Chai, C. P . Preparation and characterization of poly(vinyl alcohol)/ZIF-8 porous composites by ice-templating method with high ZIF-8 loading amount . Chinese J. Polym. Sci. , 2020 . 38 638 -643 . DOI:10.1007/s10118-020-2368-zhttp://doi.org/10.1007/s10118-020-2368-z .
Tong, H.; Noda, I.; Gryte, C. C . CPS 768 formation of anisotropic ice-agar composites by directional freezing . Colloid. Polym. Sci. , 1984 . 262 589 -595 . DOI:10.1007/BF01451524http://doi.org/10.1007/BF01451524 .
Müller, D.; Klepzig, L. F.; Schlosser, A.; Dorfs, D.; Bigall, N. C . Structural diversity in cryoaerogel synthesis . Langmuir , 2021 . 37 5109 -5117 . DOI:10.1021/acs.langmuir.0c03619http://doi.org/10.1021/acs.langmuir.0c03619 .
Joukhdar, H.; Seifert, A.; Jüngst, T.; Groll, J.; Lord, M. S.; Rnjak-Kovacina, J . Ice templating soft matter: fundamental principles and fabrication approaches to tailor pore structure and morphology and their biomedical applications . Adv. Mater. , 2021 . 33 2100091 DOI:10.1002/adma.202100091http://doi.org/10.1002/adma.202100091 .
Sun, M.; Sun, H.; Hostler, S.; Schiraldi, D. A . Effects of feather-fiber reinforcement on poly(vinyl alcohol)/clay aerogels: structure, property and applications . Polymer , 2018 . 137 201 -208 . DOI:10.1016/j.polymer.2018.01.008http://doi.org/10.1016/j.polymer.2018.01.008 .
Bode, A.; Pulles, P.; Lutz, M.; Poulisse, W.; Jiang, S.; Meijer, J.; Enckevort, W. V.; Vlieg, E. Sodium chloride dihydrate crystals: morphology, nucleation, growth, and inhibition. Cryst. Growth Des. 2015, 15, 150608105351000.
Tokumasu, K.; Harada, M.; Okada, T . X-ray fluorescence imaging of frozen aqueous NaCl solutions . Langmuir , 2016 . 32 527 -533 . DOI:10.1021/acs.langmuir.5b04411http://doi.org/10.1021/acs.langmuir.5b04411 .
Tokumasu, K.; Harada, M.; Okada, T . Freezing-facilitated dehydration allowing deposition of ZnO from aqueous electrolyte . ChemPhysChem , 2017 . 18 329 -333 . DOI:10.1002/cphc.201601192http://doi.org/10.1002/cphc.201601192 .
Paria, S.; Khilar, K. C . A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface . Adv. Colloid. Interfaces , 2004 . 110 75 -95 . DOI:10.1016/j.cis.2004.03.001http://doi.org/10.1016/j.cis.2004.03.001 .
Congdon, T.; Notman, R.; Gibson, M. I . Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study . Biomacromolecules , 2013 . 14 1578 -1586 . DOI:10.1021/bm400217jhttp://doi.org/10.1021/bm400217j .
Akiya, T.; Shimazaki, T.; Oowa, M.; Nakaiwa, M.; Nakane, T.; Hakuta, T.; Matsuo, M.; Yoshida, Y . Phase equilibria of some alternative refrigerants hydrates and their mixtures using for cool storage materials . Proc. Intersoc. Energy Convers. Eng. Conf , 1997 . 3 1652 -1655. .
Tiddy, G . Surfactant-water liquid crystal phases . Phys. Rep. , 1980 . 57 1 -46 . DOI:10.1016/0370-1573(80)90041-1http://doi.org/10.1016/0370-1573(80)90041-1 .
Zheng, L.; Jin, L. I.; Liu, H. B . Carbon aerogels prepared based on sol-gel reaction of cellulose colloid with AEP and its adsorption of copper ions in aqueous solution . J. Inorg. Mater. , 2017 . 32 1159 DOI:10.15541/jim20170053http://doi.org/10.15541/jim20170053 .
White, M. A.; Conrad, J.; Ellis, S. N.; Chen, R . Investigations of ice-structuring agents in ice-templated ceramics . J. Am. Ceram. Soc. , 2017 . 100 5066 -5074 . DOI:10.1111/jace.15060http://doi.org/10.1111/jace.15060 .
Unidirectional freezing of ceramic suspensions: in situ X-ray investigation of the effects of additives. ACS Appl. Mater. Interfaces 2014, 6, 159.
Hummers, W. S.; Offeman, R. E . Preparation of graphitic oxide . J. Am. Chem. Soc. , 1958 . 208 1334 -1339. .
Bokias, G.; Staikos, G.; Iliopoulos, I . Solution properties and phase behaviour of copolymers of acrylic acid with N-isopropylacrylamide: the importance of the intrachain hydrogen bonding . Polymer , 2000 . 41 7399 -7405 . DOI:10.1016/S0032-3861(00)00090-2http://doi.org/10.1016/S0032-3861(00)00090-2 .
Huang, C.; Zhang, J.; Cai, X.; Huang, G.; Wu, J . The effects of proteins and phospholipids on the network structure of natural rubber: a rheological study in bulk and in solution . J. Polym. Res. , 2020 . 27 158 DOI:10.1007/s10965-020-02147-9http://doi.org/10.1007/s10965-020-02147-9 .
Bai, G.; Gao, D.; Liu, Z.; Zhou, X.; Wang, J . Probing the critical nucleus size for ice formation with graphene oxide nanosheets . Nature , 2019 . 576 437 -441 . DOI:10.1038/s41586-019-1827-6http://doi.org/10.1038/s41586-019-1827-6 .
Inada, T.; Koyama, T.; Goto, F.; Seto, T . Ice nucleation in emulsified aqueous solutions of antifreeze protein type III and poly(vinyl alcohol) . J. Phys. Chem. B , 2011 . 115 7914 DOI:10.1021/jp111745vhttp://doi.org/10.1021/jp111745v .
Duman, J. G . Antifreeze and ice nucleator proteins in terrestrial arthropods . Annu. Rev. Physiol. , 2001 . 63 327 -357 . DOI:10.1146/annurev.physiol.63.1.327http://doi.org/10.1146/annurev.physiol.63.1.327 .
Olsen, T. M.; Duman, J. G . Maintenance of the supercooled state in overwintering pyrochroid beetle larvae, dendroides canadensis: role of hemolymph ice nucleators and antifreeze proteins . J. Comp. Physiol. B , 1997 . 167 105 -113 . DOI:10.1007/s003600050053http://doi.org/10.1007/s003600050053 .
Zhu, X.; Yang, C.; Wu, P.; Ma, Z.; Shang, Y.; Bai, G.; Liu, X.; Chang, G.; Li, N.; Dai, J . Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation . Nanoscale , 2020 . 12 4882 -4894 . DOI:10.1039/C9NR07861Dhttp://doi.org/10.1039/C9NR07861D .
Lu, X.; Arduini-Schuster, M. C.; Kuhn, J.; Nilsson, O.; Fricke, J.; Pekala, R. W . Thermal conductivity of monolithic organic aerogels . Science , 1992 . 255 971 -971 . DOI:10.1126/science.255.5047.971http://doi.org/10.1126/science.255.5047.971 .
Yi, L.; Yang, J.; Fang, X.; Xia, Y.; Zhao, L.; Wu, H.; Guo, S . Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from water . J. Hazard. Mater. , 2020 . 385 121507 .
Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H . Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications . Angew. Chem. Int. Ed. , 2012 . 51 5101 -5105 . DOI:10.1002/anie.201200710http://doi.org/10.1002/anie.201200710 .
Cao, A.; Dickrell, P.; Sawyer, W.; Ghasemi-Nejhad, M.; Ajayan, P . Super-compressible foamlike carbon nanotube films . Science , 2005 . 310 1307 -1310 . DOI:10.1126/science.1118957http://doi.org/10.1126/science.1118957 .
Raheel, M.; Yao, K.; Gong, J.; Chen, X. C.; Liu, D. T.; Lin, Y. C.; Cui, D . M.; Siddiq, M.; Tang, T. Poly(vinyl alcohol)/GO-MMT nanocomposites: preparation, structure and properties . Chinese J. Polym. Sci. , 2015 . 33 329 -338 . DOI:10.1007/s10118-015-1586-2http://doi.org/10.1007/s10118-015-1586-2 .
Yang, L.; Miyoshi, Y.; Sugio, K.; Choi, Y.; Matsugi, K.; Sasaki, G . Effect of graphite orientation distribution on thermal conductivity of Cu matrix composite . Mater. Chem. Phys. , 2021 . 257 123702 DOI:10.1016/j.matchemphys.2020.123702http://doi.org/10.1016/j.matchemphys.2020.123702 .
Pan, X.; Debije, M. G.; Schenning, A. P. H. J.; Bastiaansen, C. W. M . Enhanced thermal conductivity in oriented polyvinyl alcohol/graphene oxide composites . ACS Appl. Mater. Interfaces , 2021 . 13 28864 -28869 . DOI:10.1021/acsami.1c06415http://doi.org/10.1021/acsami.1c06415 .
0
浏览量
13
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构