a.The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
b.National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
c.Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
d.Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450002, China
min.jie@whu.edu.cn
Scan for full text
Tao Wang, Rui Sun, Xin-Rong Yang, 等. A Near-Infrared Polymer Acceptor Enables over 15% Efficiency for All-Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2022,40(8):877-888.
Tao Wang, Rui Sun, Xin-Rong Yang, et al. A Near-Infrared Polymer Acceptor Enables over 15% Efficiency for All-Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2022,40(8):877-888.
Tao Wang, Rui Sun, Xin-Rong Yang, 等. A Near-Infrared Polymer Acceptor Enables over 15% Efficiency for All-Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2022,40(8):877-888. DOI: 10.1007/s10118-022-2697-1.
Tao Wang, Rui Sun, Xin-Rong Yang, et al. A Near-Infrared Polymer Acceptor Enables over 15% Efficiency for All-Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2022,40(8):877-888. DOI: 10.1007/s10118-022-2697-1.
We synthesized a new PA PYT-Tz with fused-ring benzotriazole (BTz)-based A’-DAD-A’ structure as electron-deficient-core, n-nonane as alkyl-side-chain and thiophene as π-bridge. PYT-Tz showed significantly red-shifted absorption and up-shifted LUMO level compared with PYT due to the less electron-deficient property of BTz unit, leading to a high PCE of 15.10%.
Finding effective molecular design strategies to enable efficient charge generation, high charge transport, and small energy loss is a longstanding challenge for developing high-performance all-polymer solar cells (all-PSCs). Here, we designed and synthesized a fused-aromatic-ring-constructed near-infrared (NIR) polymer acceptor (P,A,) PYT-Tz with fused-ring benzotriazole (BTz)-based A’-DAD-A’ structure as electron-deficient-core,n,-nonane as alkyl-side-chain and thiophene as ,π,-bridge, and achieved a power conversion efficiency (PCE) of 15.10% for the all-PSCs with PYT-Tz as acceptor and a wide-bandgap PBDB-T as donor. A control P,A, PYT reported by our lab recently was introduced for investigating the synergistic effect of the electron-deficient-core and alkyl-side-chain on the optoelectronic properties and photovoltaic performance of the ,n,-type P,A,s. Compared with PYT, the designed PYT-Tz exhibits intense and red-shifted absorption, upshifted energy levels, high electron mobility and ordered molecular packing in the active layers, and, blended with PBDB-T, yields the efficient hole injection, ultrafast charge generation, and the decreased non-radiative recombination loss of 0.17 eV. Of note is that the PCE of 15.10% is one of the highest PCE values for an all-PSC reported to date. Our results indicate BTz-based fused-aromatic-ring-constructed P,A,s are promising NIR acceptors in the all-PSCs.
Benzotriazole-based A’-DAD-A’ structureNear-infrared polymer acceptorHigh-performance all-polymer solar cells
Li, S. X.; Li, C. Z.; Shi, M. M.; Chen, H. Z . New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives . ACS Energy Lett. , 2020 . 5 1554 -1567 . DOI:10.1021/acsenergylett.0c00537http://doi.org/10.1021/acsenergylett.0c00537 .
Fukuda, K.; Yu, K.; Someya, T . The future of flexible organic solar cells . Adv. Energy Mater. , 2020 . 10 2000765 DOI:10.1002/aenm.202000765http://doi.org/10.1002/aenm.202000765 .
Cheng, P.; Yang, Y . Narrowing the band gap: the key to high-performance organic photovoltaics . Acc. Chem. Res. , 2020 . 53 1218 -1228 . DOI:10.1021/acs.accounts.0c00157http://doi.org/10.1021/acs.accounts.0c00157 .
Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J . PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics . Mater. Today , 2020 . 35 115 -130 . DOI:10.1016/j.mattod.2019.10.023http://doi.org/10.1016/j.mattod.2019.10.023 .
Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J . Recent advances, design guidelines, and prospects of all-polymer solar cells . Chem. Rev. , 2019 . 119 8028 -8086 . DOI:10.1021/acs.chemrev.9b00044http://doi.org/10.1021/acs.chemrev.9b00044 .
Wu, Y.; Schneider, S.; Walter, C.; Chowdhury, A. H.; Bahrami, B.; Wu, H. C.; Qiao, Q.; Toney, M. F.; Bao, Z . Fine-tuning semiconducting polymer self-aggregation and crystallinity enables optimal morphology and high-performance printed all-polymer solar cells . J. Am. Chem. Soc. , 2020 . 142 392 -406 . DOI:10.1021/jacs.9b10935http://doi.org/10.1021/jacs.9b10935 .
Shi, S.; Chen, P.; Wang, H.; Koh, C. W.; Uddin, M. A.; Liu, B.; Liao, Q.; Feng, K.; Woo, H . Y.; Xiao, G.; Guo, X. Ultranarrow bandgap naphthalenediimide-dialkylbifuran-based copolymers with high-performance organic thin-film transistors and all-polymer solar cells . Macromol. Rapid Commun. , 2020 . 41 e2000144 DOI:10.1002/marc.202000144http://doi.org/10.1002/marc.202000144 .
Xu, X.; Feng, K.; Bi, Z.; Ma, W.; Zhang, G.; Peng, Q . Single-junction polymer solar cells with 16.35% efficiency enabled by a platinum(II) complexation strategy . Adv. Mater. , 2019 . 31 e1901872 DOI:10.1002/adma.201901872http://doi.org/10.1002/adma.201901872 .
Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y . Achieving over 16% efficiency for single-junction organic solar cells . Sci. China Chem. , 2019 . 62 746 -752 . DOI:10.1007/s11426-019-9457-5http://doi.org/10.1007/s11426-019-9457-5 .
Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515.
Zhang, Z. G.; Li, Y . Polymerized small-molecule acceptors for high-performance all-polymer solar cells . Angew. Chem. Int. Ed. , 2021 . 60 4422 -4433 . DOI:10.1002/anie.202009666http://doi.org/10.1002/anie.202009666 .
Zhang, Z . G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells . Angew. Chem. Int. Ed. , 2017 . 56 13503 -13507 . DOI:10.1002/anie.201707678http://doi.org/10.1002/anie.201707678 .
Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Lai, J. Y. L.; Zou, Y.; Ade, H.; Yan, H . Efficient all-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency . ACS Energy Lett. , 2019 . 4 417 -422 . DOI:10.1021/acsenergylett.8b02114http://doi.org/10.1021/acsenergylett.8b02114 .
Fan, Q. P.; Su, W. Y.; Chen, S. S.; Kim, W.; Chen, X. B.; Lee, B.; Liu, T.; Mendez-Romero, U. A.; Ma, R. J.; Yang, T.; Zhuang, W. L.; Li, Y.; Li, Y. W.; Kim, T. S.; Hou, L. T.; Yang, C.; Yan, H.; Yu, D. H.; Wang, E. G . Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms . Joule , 2020 . 4 658 -672 . DOI:10.1016/j.joule.2020.01.014http://doi.org/10.1016/j.joule.2020.01.014 .
Wu, Q.; Wang, W.; Wang, T.; Sun, R.; Guo, J.; Wu, Y.; Jiao, X. C.; Brabec, C. J.; Li,Y. F.; Min, J . High-performance all-polymer solar cells with only 0.47 eV energy loss . Sci. China Chem. , 2020 . 63 1449 -1460 . DOI:10.1007/s11426-020-9785-7http://doi.org/10.1007/s11426-020-9785-7 .
Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J . R.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors . Nature , 2009 . 457 679 -686 . DOI:10.1038/nature07727http://doi.org/10.1038/nature07727 .
Feng, K.; Huang, J.; Zhang, X.; Wu, Z.; Shi, S.; Thomsen, L.; Tian, Y.; Woo, H. Y.; McNeill, C. R.; Guo, X . High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV . Adv. Mater. , 2020 . e2001476 .
Shi, S.; Chen, P.; Chen, Y.; Feng, K.; Liu, B.; Chen, J.; Liao, Q.; Tu, B.; Luo, J.; Su, M.; Guo, H.; Kim, M . G.; Facchetti, A.; Guo, X. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells . Adv. Mater. , 2019 . 31 e1905161 DOI:10.1002/adma.201905161http://doi.org/10.1002/adma.201905161 .
Li, Y.; Meng, H.; Liu, T.; Xiao, Y.; Tang, Z.; Pang, B.; Li, Y.; Xiang, Y.; Zhang, G.; Lu, X.; Yu, G.; Yan, H.; Zhan, C.; Huang, J.; Yao, J. . 8.78% Efficient all-polymer solar cells enabled by polymer acceptors based on a B←N embedded electron-deficient unit . Adv. Mater. , 2019 . 31 e1904585 DOI:10.1002/adma.201904585http://doi.org/10.1002/adma.201904585 .
Hou, J.; Inganas, O.; Friend, R.H.; Gao, F . Organic solar cells based on non-fullerene acceptors . Nat. Mater. , 2018 . 17 119 -128 . DOI:10.1038/nmat5063http://doi.org/10.1038/nmat5063 .
Wu, J.; Meng, Y.; Guo, X.; Zhu, L.; Liu, F.; Zhang, M . All-polymer solar cells based on a novel narrow-bandgap polymer acceptor with power conversion efficiency over 10% . J. Mater. Chem. A , 2019 . 7 16190 -16196 . DOI:10.1039/C9TA04611Ahttp://doi.org/10.1039/C9TA04611A .
Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M. M.; Yang, W. Y.; Li, H. N.; Min, J . Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells . Joule , 2020 . 4 1070 -1086 . DOI:10.1016/j.joule.2020.03.019http://doi.org/10.1016/j.joule.2020.03.019 .
Yao, H.; Ma, L. K.; Yu, H.; Yu, J.; Chow, P. C. Y.; Xue, W.; Zou, X.; Chen, Y.; Liang, J.; Arunagiri, L.; Gao, F.; Sun, H.; Zhang, G.; Ma, W.; Yan, H . All-polymer solar cells with over 12% efficiency and a small voltage loss enabled by a polymer acceptor based on an extended fused ring core . Adv. Energy Mater. , 2020 . 10 2001408 DOI:10.1002/aenm.202001408http://doi.org/10.1002/aenm.202001408 .
Du, J.; Hu, K.; Meng, L.; Angunawela, I.; Zhang, J.; Qin, S.; Liebman-Pelaez, A.; Zhu, C.; Zhang, Z.; Ade, H.; Li, Y . High-performance all-polymer solar cells: synthesis of polymer acceptor by a random ternary copolymerization strategy . Angew. Chem. Int. Ed. , 2020 . 59 15181 -15185 . DOI:10.1002/anie.202005357http://doi.org/10.1002/anie.202005357 .
Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J . A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance . Adv. Mater. , 2015 . 27 4655 -4660 . DOI:10.1002/adma.201502110http://doi.org/10.1002/adma.201502110 .
Ye, L.; Jiao, X.; Zhou, M.; Zhang, S.; Yao, H.; Zhao, W.; Xia, A.; Ade, H.; Hou, J . Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells . Adv. Mater. , 2015 . 27 6046 -6054 . DOI:10.1002/adma.201503218http://doi.org/10.1002/adma.201503218 .
Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. 14 . 4% Efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor . Nano Energy , 2020 . 72 104718 DOI:10.1016/j.nanoen.2020.104718http://doi.org/10.1016/j.nanoen.2020.104718 .
Tang, A.; Li, J.; Zhang, B.; Peng, J.; Zhou, E . Low-bandgap n-type polymer based on a fused-DAD-type heptacyclic ring for all-polymer solar cell application with a power conversion efficiency of 10.7% . ACS Macro Lett. , 2020 . 9 706 DOI:10.1021/acsmacrolett.0c00234http://doi.org/10.1021/acsmacrolett.0c00234 .
Zhang, B.; Li, J.; Tang, A.; Geng, Y.; Guo, Q.; Zhou, E . Utilizing benzotriazole-fused DAD-type heptacyclic ring to construct n-type polymer for all-polymer solar cell application . ACS Appl. Energy Mater. , 2021 . 4 4217 DOI:10.1021/acsaem.1c00584http://doi.org/10.1021/acsaem.1c00584 .
Zhou, H.; Yang, L.; Stuart, A.C.; Price, S.C.; Liu, S.; You, W . Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency . Angew. Chem. Int. Ed. , 2011 . 50 2995 -2998 . DOI:10.1002/anie.201005451http://doi.org/10.1002/anie.201005451 .
Min, J.; Zhang, Z. G.; Zhang, S.; Li, Y . Conjugated side-chain-isolated D-A copolymers based on benzo[1,2-b:4,5-b′]dithiophene-alt-dithienylbenzotriazole: synthesis and photovoltaic properties . Chem. Mater. , 2012 . 24 3247 -3254 . DOI:10.1021/cm3017006http://doi.org/10.1021/cm3017006 .
Li, W.; Yan, L.; Zhou, H.; You, W . A general approach toward electron deficient triazole units to construct conjugated polymers for solar cells . Chem. Mater. , 2015 . 27 6470 -6476 . DOI:10.1021/acs.chemmater.5b03098http://doi.org/10.1021/acs.chemmater.5b03098 .
Zhang, Z. G.; Bai, Y.; Li, Y . Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells . Chinese J. Polym. Sci. , 2021 . 39 1 -13 . DOI:10.1007/s10118-020-2496-5http://doi.org/10.1007/s10118-020-2496-5 .
Price, S. C.; Stuart, A.C.; Yang, L.; Zhou, H.; You, W . Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells . J. Am. Chem. Soc. , 2011 . 133 4625 -4631 . DOI:10.1021/ja1112595http://doi.org/10.1021/ja1112595 .
Zhu, C.; Li, Z.; Zhong, W.; Peng, F.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y . Constructing a new polymer acceptor enabled non-halogenated solvent-processed all-polymer solar cells with efficiency of 13.8% . Chem. Commun. , 2021 . 57 935 DOI:10.1039/D0CC07213Chttp://doi.org/10.1039/D0CC07213C .
Fu, H.; Li, Y.; Yu, J.; Wu, Z.; Fan, Q.; Lin, F.; Woo, H. Y.; Gao, F.; Zhu, Z.; Jen, A. K. . High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor . J. Am. Chem. Soc. , 2021 . 143 2665 DOI:10.1021/jacs.0c12527http://doi.org/10.1021/jacs.0c12527 .
Du, J.; Hu, K.; Zhang, J.; Meng, L.; Yue, J.; Angunawela, I.; Yan, H.; Qin, S.; Kong, X.; Zhang, Z.; Guan, B.; Ade, H.; Li, Y . Polymerized small molecular acceptor based allpolymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design . Nat. Commun. , 2021 . 12 5264 DOI:10.1038/s41467-021-25638-9http://doi.org/10.1038/s41467-021-25638-9 .
Zhu, C.; Yuan, J.; Cai, F.; Meng, L.; Zhang, H.; Chen, H.; Li, J.; Qiu, B.; Peng, H.; Chen, S.; Hu, Y.; Yang, C.; Gao, F.; Zou, Y.; Li, Y . Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell . Energy Environ. Sci. , 2020 . 13 2459 -2466 . DOI:10.1039/D0EE00862Ahttp://doi.org/10.1039/D0EE00862A .
Yang, W.; Luo, Z.; Sun, R.; Guo, J.; Wang, T.; Wu, Y.; Wang, W.; Guo, J.; Wu, Q.; Shi, M.; Li, H.; Yang, C.; Min, J . Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive . Nat. Commun. , 2020 . 11 1218 DOI:10.1038/s41467-020-14926-5http://doi.org/10.1038/s41467-020-14926-5 .
Chen, Z.; Hu, Z.; Wu, Z.; Liu, X.; Jin, Y.; Xiao, M.; Huang, F.; Cao, Y . Counterion-tunable n-type conjugated polyelectrolytes for the interface engineering of efficient polymer solar cells . J. Mater. Chem. A , 2017 . 5 19447 -19455 . DOI:10.1039/C7TA05246Dhttp://doi.org/10.1039/C7TA05246D .
Min, J.; Luponosov, Y. N.; Zhang, Z. G.; Ponomarenko, S. A.; Ameri, T.; Li, Y. F.; Brabec, C. J . Interface design to improve the performance and stability of solution-processed small-molecule conventional solar cells . Adv. Energy Mater. , 2014 . 4 1400816 DOI:10.1002/aenm.201400816http://doi.org/10.1002/aenm.201400816 .
Min, J.; Luponosov, Y. N.; Gasparini, N.; Richter, M.; Bakirov, A. V.; Shcherbina, M. A.; Chvalun, S. N.; Grodd, L.; Grigorian, S.; Ameri, T.; Ponomarenko, S. A.; Brabec, C. J . Effects of alkyl terminal chains on morphology, charge generation, transport, and recombination mechanisms in solution-processed small molecule bulk heterojunction solar cells . Adv. Energy Mater. , 2015 . 5 1500386 DOI:10.1002/aenm.201500386http://doi.org/10.1002/aenm.201500386 .
Tran, D. K.; Kolhe, N. B.; Hwang, Y. J.; Kuzuhara, D.; Koganezawa, T.; Jenekhe, S. A . Effects of a fluorinated donor polymer on the morphology, photophysics, and performance of all-polymer solar cells based on naphthalene diimide-arylene copolymer acceptors . ACS Appl. Mater. Interfaces , 2020 . 12 16490 -16502 . DOI:10.1021/acsami.0c01382http://doi.org/10.1021/acsami.0c01382 .
Min, J.; Luponosov, Y. N.; Ameri, T.; Elschner, A.; Peregudova, S. M.; Baran, D.; Heumuller, T.; Li, N.; Machui, F.; Ponomarenko, S.; Brabec, C. J . A solution-processable star-shaped molecule for high-performance organic solar cells via alkyl chain engineering and solvent additive . Org. Electron. , 2013 . 14 219 -229 . DOI:10.1016/j.orgel.2012.11.002http://doi.org/10.1016/j.orgel.2012.11.002 .
Jakowetz, A. C.; Bohm, M. L.; Zhang, J.; Sadhanala, A.; Huettner, S.; Bakulin, A. A.; Rao, A.; Friend, R. H . What controls the rate of ultrafast charge transfer and charge separation efficiency in organic photovoltaic blends . J. Am. Chem. Soc. , 2016 . 138 11672 -11679 . DOI:10.1021/jacs.6b05131http://doi.org/10.1021/jacs.6b05131 .
Rau, U . Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells . Phys. Rev. B , 2007 . 76 085303 DOI:10.1103/PhysRevB.76.085303http://doi.org/10.1103/PhysRevB.76.085303 .
Deibel, C.; Strobel, T.; Dyakonov, D . Role of the charge transfer state in organic donor-acceptor solar cells . Adv. Mater. , 2010 . 22 4097 DOI:10.1002/adma.201000376http://doi.org/10.1002/adma.201000376 .
Sun, R.; Guo, J.; Wu, Q.; Zhang, Z. H.; Yang, W. Y.; Guo, J.; Shi, M. M.; Zhang, Y. H.; Kahmann, S.; Ye, L.; Jiao, X. C.; Loi, M. A.; Shen, Q.; Ade, H.; Tang, W. H.; Brabec, C. J.; Min, J . A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: rational control of vertical stratification for high performance . Energy Environ. Sci. , 2019 . 12 3118 -3132 . DOI:10.1039/C9EE02295Chttp://doi.org/10.1039/C9EE02295C .
Menke, S. M.; Ran, N. A.; Bazan, G. C.; Friend, R. H . Understanding energy loss in organic solar cells: toward a new efficiency regime . Joule , 2018 . 2 25 -35 . DOI:10.1016/j.joule.2017.09.020http://doi.org/10.1016/j.joule.2017.09.020 .
Gurney, R. S.; Lidzey, D. G.; Wang, T . A review of non-fullerene polymer solar cells: from device physics to morphology control . Rep. Prog. Phys. , 2019 . 82 036601 DOI:10.1088/1361-6633/ab0530http://doi.org/10.1088/1361-6633/ab0530 .
Eisner, F. D.; Azzouzi, M.; Fei, Z.; Hou, X.; Anthopoulos, T. D.; Dennis, T. J . S.; Heeney, M.; Nelson, J. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells . J. Am. Chem. Soc. , 2019 . 141 6362 -6374 . DOI:10.1021/jacs.9b01465http://doi.org/10.1021/jacs.9b01465 .
Wang, Y. M.; Qian, D. P.; Cui, Y.; Zhang, H. T.; Hou, J . H.; Vandewal, K.; Kirchartz, T.; Gao, F. Optical gaps of organic solar cells as a reference for comparing voltage losses . Adv. Energy Mater. , 2018 . 8 1801352 DOI:10.1002/aenm.201801352http://doi.org/10.1002/aenm.201801352 .
0
浏览量
6
Downloads
1
CSCD
关联资源
相关文章
相关作者
相关机构