a.College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
b.Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
yhniu@scu.edu.cn (Y.H.N.)
guangxianli@scu.edu.cn (G.X.L.)
Scan for full text
Wen-Yue Zhuo, Qi-Long Wang, Gao Li, 等. Detection of the Destruction Mechanism of Perfluorinated Elastomer (FFKM) Network under Thermo-oxidative Aging Conditions[J]. Chinese Journal of Polymer Science, 2022,40(5):504-514.
Wen-Yue Zhuo, Qi-Long Wang, Gao Li, et al. Detection of the Destruction Mechanism of Perfluorinated Elastomer (FFKM) Network under Thermo-oxidative Aging Conditions[J]. Chinese Journal of Polymer Science, 2022,40(5):504-514.
Wen-Yue Zhuo, Qi-Long Wang, Gao Li, 等. Detection of the Destruction Mechanism of Perfluorinated Elastomer (FFKM) Network under Thermo-oxidative Aging Conditions[J]. Chinese Journal of Polymer Science, 2022,40(5):504-514. DOI: 10.1007/s10118-022-2692-6.
Wen-Yue Zhuo, Qi-Long Wang, Gao Li, et al. Detection of the Destruction Mechanism of Perfluorinated Elastomer (FFKM) Network under Thermo-oxidative Aging Conditions[J]. Chinese Journal of Polymer Science, 2022,40(5):504-514. DOI: 10.1007/s10118-022-2692-6.
Two competitive processes including post-curing and network destruction occur simultaneously. FTIR and XPS further reveal that the network destruction happens preferentially on the crosslink points of TAIC structure and a schematic degradation process of TAIC structure is proposed according to the results of microscopic experiments.
The changes of crosslinking network of perfluorinated elastomer (FFKM) cured by TAIC and DBPH under thermo-oxidative aging conditions were investigated. Two competitive processes including post-curing and network destruction occur simultaneously, which directly affect the storage modulus and crosslinking density. With the increase of aging temperature, the network destruction becomes dominant. FTIR and XPS characterizations further reveal that the network destruction happens preferentially on the crosslink points of TAIC structure, and the post-curing is mainly caused by the decomposition of residual curing agent DBPH. Unlike the easier breaking of TAIC structure in the crosslinking network, both the backbone and the pendent groups of FFKM itself are much more stable. To further figure out the destruction mechanism, TGA-FTIR-GC-MS test was also conducted and a schematic degradation process of TAIC structure was proposed. It is found that the destruction of TAIC crosslinking points happens first on the unstable exocyclic C―N bonds and the intermediate ring radicals could eventually decompose into volatile hydrogen isocyanate (HCNO) under extreme condition.
Perfluorinated elastomer (FFKM)Thermo-oxidative agingDestruction mechanismCrosslinking point
Améduri, B.; Boutevin, B.; Kostov, G . Fluoroelastomers: synthesis, properties and applications . Prog. Polym. Sci. , 2001 . 26 105 -187 . DOI:10.1016/S0079-6700(00)00044-7http://doi.org/10.1016/S0079-6700(00)00044-7 .
Kader, M. A.; Bhowmick, A. K . Acrylic rubber-fluorocarbon rubber miscible blends: effect of curatives and fillers on cure, mechanical, aging, and swelling properties . J. Appl. Polym. Sci. , 2003 . 89 1442 -1452 . DOI:10.1002/app.12225http://doi.org/10.1002/app.12225 .
Taguet, A.; Ameduri, B.; Boutevin, B. Crosslinking of vinylidene fluoride-containing fluoropolymers. in Advances in Polymer Science, Springer, Berlin, Heidelberg, 2005, 127−212.
Subhash V. Gangal. Perfluorinated polymers. In Kirk‐Othmer Encyclopedia of Chemical Technology. John Wiley & Sons Inc. 2004.
Arrigoni, S.; Merli, F . New perfluoroelastomer for sealing at low temperatures . Seal. Technol. , 2010 . 2010 9 -13 . DOI:10.1016/S1350-4789(10)70434-7http://doi.org/10.1016/S1350-4789(10)70434-7 .
Lou, W.; Zhang, W.; Jin, T.; Liu, X.; Wang, H . Stress-thermal oxidative aging behavior of hydrogenated nitrile rubber seals . J. Appl. Polym. Sci. , 2019 . 136 47014 DOI:10.1002/app.47014http://doi.org/10.1002/app.47014 .
Xia, L.; Wang, M.; Wu, H.; Guo, S . Effects of cure system and filler on chemical aging behavior of fluoroelastomer in simulated proton exchange membrane fuel cell environment . Int. J. Hydrogen Energy , 2016 . 41 2887 -2895 . DOI:10.1016/j.ijhydene.2015.12.043http://doi.org/10.1016/j.ijhydene.2015.12.043 .
Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Almdal, K.; Rehmeier, H.; Christensen, A . Chemical degradation of fluoroelastomer in an alkaline environment . Polym. Degrad. Stabil. , 2004 . 83 195 -206 . DOI:10.1016/S0141-3910(03)00235-0http://doi.org/10.1016/S0141-3910(03)00235-0 .
Heller, M.; Legare, J.; Wang, S.; Fukuhara, S . Thermal stability and sealing performance of perfluoroelastomer seals as a function of crosslinking chemistry . J. Vac. Sci. Technol. A , 1999 . 17 2119 -2124 . DOI:10.1116/1.581736http://doi.org/10.1116/1.581736 .
Sugama, T.; Pyatina, T.; Redline, E.; McElhanon, J.; Blankenship, D . Degradation of different elastomeric polymers in simulated geothermal environments at 300 °C . Polym. Degrad. Stabil. , 2015 . 120 328 -339 . DOI:10.1016/j.polymdegradstab.2015.07.010http://doi.org/10.1016/j.polymdegradstab.2015.07.010 .
Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Hvilsted, S.; Almdal, K. . Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment . J. Polym. Sci., Part A: Polym. Chem. , 2004 . 42 6216 -6229 . DOI:10.1002/pola.20473http://doi.org/10.1002/pola.20473 .
Knight, J. G.; Wright, W. W . The thermal degradation of some fluorine-containing elastomers . Thermochim. Acta , 1983 . 60 187 -194 . DOI:10.1016/0040-6031(83)80269-Xhttp://doi.org/10.1016/0040-6031(83)80269-X .
Li, D.; Liao, M . Dehydrofluorination mechanism, structure and thermal stability of pure fluoroelastomer (poly(VDF-ter-HFP-ter-TFE) terpolymer) in alkaline environment . J. Fluorine Chem. , 2017 . 201 55 -67 . DOI:10.1016/j.jfluchem.2017.08.002http://doi.org/10.1016/j.jfluchem.2017.08.002 .
Wang, Q. L.; Pei, J. K.; Li, G.; Niu, Y. H.; Li, G. X . Accelerated aging behaviors and mechanism of fluoroelastomer in lubricating oil medium . Chinese J. Polym. Sci. , 2020 . 38 853 -866 . DOI:10.1007/s10118-020-2410-1http://doi.org/10.1007/s10118-020-2410-1 .
Kömmling, A.; Jaunich, M.; Goral, M.; Wolff, D . Insights for lifetime predictions of O-ring seals from five-year long-term aging tests . Polym. Degrad. Stabil. , 2020 . 179 109 -278 . DOI:10.1016/j.polymdegradstab.2020.109278http://doi.org/10.1016/j.polymdegradstab.2020.109278 .
Li, G.; Zhuo, W. Y.; Yang, G.; Niu, Y. H.; Li, G. X . Study on the aging behaviors and mechanism of nitrile rubber under multiple coupled factors . Acta Polymerica Sinica (in Chinese) , 2021 . 52 762 -774 . DOI:10.11777/j.issn1000-3304.2020.20246http://doi.org/10.11777/j.issn1000-3304.2020.20246 .
Liu, Q.; Li, J.; Cong, C.; Cui, H.; Xu, L.; Zhang, Y.; Meng, X.; Zhou, Q . Thermal and thermo-oxidative degradation of tetrafluoroethylene-propylene elastomer above 300 °C . Polym. Degrad. Stabil. , 2020 . 177 109 -180 . DOI:10.1016/j.polymdegradstab.2020.109180http://doi.org/10.1016/j.polymdegradstab.2020.109180 .
Smith, J. F.; Perkins G. T. . The mechanism of post cure of viton A Fluorocarbon elastomer . J. Appl. Polym. Sci. , 1961 . 5 460 -467 . DOI:10.1002/app.1961.070051612http://doi.org/10.1002/app.1961.070051612 .
Zhao, H.; Chen, J.; Zhang, H.; Shang, Y.; Wang, X.; Han, B.; Li, Z. J . Theoretical study on the reaction of triallyl isocyanurate in the UV radiation cross-linking of polyethylene . RSC Adv. , 2017 . 7 37095 -37104 . DOI:10.1039/C7RA05535Hhttp://doi.org/10.1039/C7RA05535H .
Yang, S. L.; Wu, Z. H.; Yang, W.; Yang, M. B . Thermal and mechanical properties of chemical crosslinked polylactide (PLA) . Polym. Test. , 2008 . 27 957 -963 . DOI:10.1016/j.polymertesting.2008.08.009http://doi.org/10.1016/j.polymertesting.2008.08.009 .
Qla, B.; Jia, L.; Yja, B.; Cca, B.; Lx, C.; Ying, Z.; Xma, B.; Qza, B . Effect of crosslinked structure on the chemical degradation of EPDM rubber in an acidic environment . Polym. Degrad. Stabil. , 2021 . 185 109475 DOI:10.1016/j.polymdegradstab.2020.109475http://doi.org/10.1016/j.polymdegradstab.2020.109475 .
Muroga, S.; Yu, T.; Hikima, Y.; Ata, S.; Hata, K . New evaluation method for the curing degree of rubber and its nanocomposites using ATR-FTIR spectroscopy . Polym. Test. , 2020 . 93 106993 DOI:10.1016/j.polymertesting.2020.106993http://doi.org/10.1016/j.polymertesting.2020.106993 .
Shogo, Y.; Hideyuki, S.; Seisuke, A.; Yasumasa, S.; Ayumi, N.; Junji, M . A thermal oxidative degradation study of triallyl isocyanurate crosslinking moiety in fluorinated rubber by two-dimensional infrared correlation spectroscopy . Vib. Spectrosc. , 2018 . 98 30 -34 . DOI:10.1016/j.vibspec.2018.07.002http://doi.org/10.1016/j.vibspec.2018.07.002 .
Saville, B.; Watson, A . Structural characterization of sulfur-vulcanized rubber networks . Rubber Chem. Technol. , 1967 . 40 100 -148 . DOI:10.5254/1.3539039http://doi.org/10.5254/1.3539039 .
Hagen, R.; Salmén, L.; Stenberg, B . Effects of the type of crosslink on viscoelastic properties of natural rubber . J. Polym. Sci., Part B: Polym. Phys. , 1996 . 34 1997 -2006 . DOI:10.1002/(SICI)1099-0488(19960915)34:12<1997::AID-POLB5>3.0.CO;2-Nhttp://doi.org/10.1002/(SICI)1099-0488(19960915)34:12<1997::AID-POLB5>3.0.CO;2-N .
Guth, E . Theory of filler reinforcement . J. Appl. Phys. , 1945 . 18 596 -604. .
Xu, W. Q.; Lv, Y. D.; Kong, M. Q.; Huang, Y. J.; Li, G. X . Study on properties of waterborne polyurethane/polydopamine nanoparticles prepared by in situ polymerization . Acta Polymerica Sinica (in Chinese) , 2019 . 50 710 -720 . DOI:10.11777/j.issn1000-3304.2018.18250http://doi.org/10.11777/j.issn1000-3304.2018.18250 .
Hou, F.; Song, Y.; Zheng, Q . Payne effect of thermo-oxidatively aged isoprene rubber vulcanizates . Polymer , 2020 . 195 122432 DOI:10.1016/j.polymer.2020.122432http://doi.org/10.1016/j.polymer.2020.122432 .
Barjasteh, E.; Kar, N. K.; Nutt, S . Effect of filler on thermal aging of composites for next-generation power lines . Compos. Part A , 2011 . 42 1873 -1882 . DOI:10.1016/j.compositesa.2011.08.006http://doi.org/10.1016/j.compositesa.2011.08.006 .
Morelli, J. J.; Fry, C. G.; Grayson, M. A.; Lind, A. C.; Wolf, C. J . The thermal oxidative degradation of an ethylene-tetrafluoroethylene-copolymer-based electrical wire insulation . J. Appl. Polym. Sci. , 1991 . 43 601 -611 . DOI:10.1002/app.1991.070430322http://doi.org/10.1002/app.1991.070430322 .
Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Rehmeier, H. K.; Abildgaard, H.; Almdal, K . Chemical degradation of crosslinked ethylene-propylene-diene rubber in an acidic environment. Part II. Effect of peroxide crosslinking in the presence of a coagent . Polym. Degrad. Stabil. , 2006 . 91 81 -93 . DOI:10.1016/j.polymdegradstab.2005.04.031http://doi.org/10.1016/j.polymdegradstab.2005.04.031 .
0
浏览量
5
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构