a.Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
b.Department of Chemical Engineering, Pusan National University, Pusan 46241, Republic of Korea
choe@pusan.ac.kr (Y.C.)
joona@korea.ac.kr (J.B.)
Scan for full text
Junsoo Moon, Yoon Huh, Seonghwan Kim, 等. Reactive Core-Shell Bottlebrush Copolymer as Highly Effective Additive for Epoxy Toughening[J]. Chinese Journal of Polymer Science, 2021,39(12):1626-1633.
Junsoo Moon, Yoon Huh, Seonghwan Kim, et al. Reactive Core-Shell Bottlebrush Copolymer as Highly Effective Additive for Epoxy Toughening[J]. Chinese Journal of Polymer Science, 2021,39(12):1626-1633.
Junsoo Moon, Yoon Huh, Seonghwan Kim, 等. Reactive Core-Shell Bottlebrush Copolymer as Highly Effective Additive for Epoxy Toughening[J]. Chinese Journal of Polymer Science, 2021,39(12):1626-1633. DOI: 10.1007/s10118-021-2614-z.
Junsoo Moon, Yoon Huh, Seonghwan Kim, et al. Reactive Core-Shell Bottlebrush Copolymer as Highly Effective Additive for Epoxy Toughening[J]. Chinese Journal of Polymer Science, 2021,39(12):1626-1633. DOI: 10.1007/s10118-021-2614-z.
Herein, we designed a core-shell structured bottlebrush copolymer (BBP), which is composed of rubbery poly(butyl acrylate) (PBA) core and an epoxy miscible/reactive poly(glycidyl methacrylate) (PGMA) shell, as an epoxy toughening agent. The PGMA shell allows BBP to be uniformly dispersed within the epoxy matrix and to react with the epoxy groups, while the rubbery PBA block simultaneously induced nanocavitation effect, leading to improvement of mechanical properties of the epoxy resin. The mechanical properties were measured by the adhesion performance test, and the tensile and fracture test using universal testing machine. When BBP additives were added to the epoxy resin, a significant improvement in the adhesion strength (2-fold increase) and fracture toughness (2-fold increase in ,K,Ic, and 5-fold increase in ,G,Ic,) compared to the neat epoxy was observed. In contrast, linear additives exhibited a decrease in adhesion strength and no improvement of fracture toughness over the neat epoxy. Such a difference in mechanical performance was investigated by comparing the morphologies and fracture surfaces of the epoxy resins containing linear and BBP additives, confirming that the nanocavitation effect and void formation play a key role in strengthening the BBP-modified epoxy resins.
Bottlebrush polymerROMPAdditiveAdhesionEpoxy toughening
Dillard, D. A. Advances in structural adhesive bonding. Elsevier: 2010.
Hartshorn, S. R. Structural adhesives: chemistry and technology. Springer Science & Business Media: 2012.
Kinloch, A . Toughening epoxy adhesives to meet today's challenges . MRS Bull. , 2003 . 28 445 -448 . DOI:10.1557/mrs2003.126http://doi.org/10.1557/mrs2003.126 .
Marques, J.; Barbosa, A.; da Silva, C.; Carbas, R.; da Silva, L . An overview of manufacturing functionally graded adhesives–Challenges and prospects . J. Adhes. , 2021 . 97 172 -206 . DOI:10.1080/00218464.2019.1646647http://doi.org/10.1080/00218464.2019.1646647 .
Schmidt, R. G.; Bell, J. P. Epoxy adhesion to metals. Springer: 1986 Vol. 75, p 33−71.
Marouf, B. T.; Mai, Y. W.; Bagheri, R.; Pearson, R. A . Toughening of epoxy nanocomposites: nano and hybrid effects . Polym. Rev. , 2016 . 56 70 -112 . DOI:10.1080/15583724.2015.1086368http://doi.org/10.1080/15583724.2015.1086368 .
Bagheri, R.; Marouf, B.; Pearson, R . Rubber-toughened epoxies: a critical review . Polym. Rev. , 2009 . 49 201 -225 . DOI:10.1080/15583720903048227http://doi.org/10.1080/15583720903048227 .
Pruksawan, S.; Samitsu, S.; Fujii, Y.; Torikai, N.; Naito, M . Toughening effect of rodlike cellulose nanocrystals in epoxy adhesive . ACS Appl. Polym. Mater. , 2020 . 2 1234 -1243 . DOI:10.1021/acsapm.9b01102http://doi.org/10.1021/acsapm.9b01102 .
Unnikrishnan, K.; Thachil, E. T . Toughening of epoxy resins . Des. Monomers Polym. , 2006 . 9 129 -152 . DOI:10.1163/156855506776382664http://doi.org/10.1163/156855506776382664 .
Hsieh, T.; Kinloch, A.; Masania, K.; Lee, J. S.; Taylor, A.; Sprenger, S . The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles . J. Mater. Sci , 2010 . 45 1193 -1210 . DOI:10.1007/s10853-009-4064-9http://doi.org/10.1007/s10853-009-4064-9 .
Liu, X. F.; Luo, X.; Liu, B. W.; Zhong, H. Y.; Guo, D. M.; Yang, R.; Chen, L.; Wang, Y. Z . Toughening epoxy resin using a liquid crystalline elastomer for versatile application . ACS Appl. Polym. Mater. , 2019 . 1 2291 -2301 . DOI:10.1021/acsapm.9b00319http://doi.org/10.1021/acsapm.9b00319 .
Huang, Y.; Liu, W.; Jiang, Q.; Wei, Y.; Qiu, Y . Interlaminar fracture toughness of carbon-fiber-reinforced epoxy composites toughened by poly (phenylene oxide) particles . ACS Appl. Polym. Mater. , 2020 . 2 3114 -3121 . DOI:10.1021/acsapm.0c00285http://doi.org/10.1021/acsapm.0c00285 .
Kinloch, A.; Shaw, S.; Tod, D.; Hunston, D . Deformation and fracture behaviour of a rubber-toughened epoxy: 1 . Microstructure and fracture studies. Polymer , 1983 . 24 1341 -1354. .
Sue, H. J . Study of rubber-modified brittle epoxy systems. Part II: Toughening mechanisms under mode-I fracture . Polym. Eng. Sci. , 1991 . 31 275 -288. .
Chen, T. K.; Jan, Y. H . Toughening mechanism for a rubber-toughened epoxy resin with rubber/matrix interfacial modification . J. Mater. Sci , 1991 . 26 5848 -5858 . DOI:10.1007/BF01130124http://doi.org/10.1007/BF01130124 .
Dompas, D.; Groeninckx, G . Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 1. A criterion for internal rubber cavitation . Polymer , 1994 . 35 4743 -4749. .
Bucknall, C.; Paul, D . Notched impact behavior of polymer blends: Part 1: New model for particle size dependence . Polymer , 2009 . 50 5539 -5548 . DOI:10.1016/j.polymer.2009.09.059http://doi.org/10.1016/j.polymer.2009.09.059 .
Bucknall, C.; Paul, D . Notched impact behaviour of polymer blends: Part 2: Dependence of critical particle size on rubber particle volume fraction . Polymer , 2013 . 54 320 -329 . DOI:10.1016/j.polymer.2012.11.019http://doi.org/10.1016/j.polymer.2012.11.019 .
Lipic, P. M.; Bates, F. S.; Hillmyer, M. A . Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures . J. Am. Chem. Soc. , 1998 . 120 8963 -8970 . DOI:10.1021/ja981544shttp://doi.org/10.1021/ja981544s .
Grubbs, R. B.; Broz, M. E.; Dean, J. M.; Bates, F. S . Selectively epoxidized polyisoprene-polybutadiene block copolymers . Macromolecules , 2000 . 33 2308 -2310 . DOI:10.1021/ma992049zhttp://doi.org/10.1021/ma992049z .
Hillmyer, M. A.; Lipic, P. M.; Hajduk, D. A.; Almdal, K.; Bates, F. S . Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites . J. Am. Chem. Soc. , 1997 . 119 2749 -2750 . DOI:10.1021/ja963622mhttp://doi.org/10.1021/ja963622m .
Grubbs, R. B.; Dean, J. M.; Bates, F. S . Methacrylic block copolymers through metal-mediated living free radical polymerization for modification of thermosetting epoxy . Macromolecules , 2001 . 34 8593 -8595 . DOI:10.1021/ma011270khttp://doi.org/10.1021/ma011270k .
Pang, V.; Thompson, Z. J.; Joly, G. D.; Bates, F. S.; Francis, L. F . Adhesion strength of block copolymer toughened epoxy on aluminum . ACS Appl. Polym. Mater. , 2019 . 2 464 -474 . DOI:10.1021/acsabm.8b00662http://doi.org/10.1021/acsabm.8b00662 .
Dean, J. M.; Verghese, N. E.; Pham, H. Q.; Bates, F. S . Nanostructure toughened epoxy resins . Macromolecules , 2003 . 36 9267 -9270 . DOI:10.1021/ma034807yhttp://doi.org/10.1021/ma034807y .
Parameswaranpillai, J.; Hameed, N.; Pionteck, J.; Woo, E. M. Handbook of epoxy blends. Springer: 2017.
Li, T.; Heinzer, M. J.; Redline, E. M.; Zuo, F.; Bates, F. S.; Francis, L. F . Microstructure and performance of block copolymer modified epoxy coatings . Prog. Org. Coat. , 2014 . 77 1145 -1154 . DOI:10.1016/j.porgcoat.2014.03.015http://doi.org/10.1016/j.porgcoat.2014.03.015 .
Thio, Y. S.; Wu, J.; Bates, F. S . Epoxy toughening using low molecular weight poly(hexylene oxide)-poly(ethylene oxide) diblock copolymers . Macromolecules , 2006 . 39 7187 -7189 . DOI:10.1021/ma052731vhttp://doi.org/10.1021/ma052731v .
Declet-Perez, C.; Francis, L. F.; Bates, F. S . Deformation processes in block copolymer toughened epoxies . Macromolecules , 2015 . 48 3672 -3684 . DOI:10.1021/acs.macromol.5b00243http://doi.org/10.1021/acs.macromol.5b00243 .
Liu, J.; Thompson, Z. J.; Sue, H.-J.; Bates, F. S.; Hillmyer, M. A.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H . Toughening of epoxies with block copolymer micelles of wormlike morphology . Macromolecules , 2010 . 43 7238 -7243 . DOI:10.1021/ma902471ghttp://doi.org/10.1021/ma902471g .
Wu, J.; Thio, Y. S.; Bates, F. S . Structure and properties of PBO–PEO diblock copolymer modified epoxy . J. Polym. Sci. Pt. B-Polym. Phys. , 2005 . 43 1950 -1965 . DOI:10.1002/polb.20488http://doi.org/10.1002/polb.20488 .
Liu, J. D.; Sue, H.-J.; Thompson, Z. J.; Bates, F. S.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H . Strain rate effect on toughening of nano-sized PEP–PEO block copolymer modified epoxy . Acta Mater. , 2009 . 57 2691 -2701 . DOI:10.1016/j.actamat.2009.02.023http://doi.org/10.1016/j.actamat.2009.02.023 .
Qian, J. Y.; Pearson, R. A.; Dimonie, V. L.; El-Aasser, M. S . Synthesis and application of core–shell particles as toughening agents for epoxies . J. Appl. Polym. , 1995 . 58 439 -448 . DOI:10.1002/app.1995.070580222http://doi.org/10.1002/app.1995.070580222 .
Bécu-Longuet, L.; Bonnet, A.; Pichot, C.; Sautereau, H.; Maazouz, A . Epoxy networks toughened by core-shell particles: influence of the particle structure and size on the rheological and mechanical properties . J. Appl. Polym. , 1999 . 72 849 -858 . DOI:10.1002/(SICI)1097-4628(19990509)72:6<849::AID-APP10>3.0.CO;2-Rhttp://doi.org/10.1002/(SICI)1097-4628(19990509)72:6<849::AID-APP10>3.0.CO;2-R .
Ning, N.; Liu, W.; Hu, Q.; Zhang, L.; Jiang, Q.; Qiu, Y.; Wei, Y . Impressive epoxy toughening by a structure-engineered core/shell polymer nanoparticle . Compos. Sci. Technol. , 2020 . 199 108364 DOI:10.1016/j.compscitech.2020.108364http://doi.org/10.1016/j.compscitech.2020.108364 .
Fröhlich, J.; Kautz, H.; Thomann, R.; Frey, H.; Mülhaupt, R . Reactive core/shell type hyperbranched blockcopolyethers as new liquid rubbers for epoxy toughening . Polymer , 2004 . 45 2155 -2164 . DOI:10.1016/j.polymer.2004.01.065http://doi.org/10.1016/j.polymer.2004.01.065 .
Luo, L.; Meng, Y.; Qiu, T.; Li, X . An epoxy-ended hyperbranched polymer as a new modifier for toughening and reinforcing in epoxy resin . J. Appl. Polym. , 2013 . 130 1064 -1073 . DOI:10.1002/app.39257http://doi.org/10.1002/app.39257 .
Verduzco, R.; Li, X.; Pesek, S. L.; Stein, G. E . Structure, function, self-assembly, and applications of bottlebrush copolymers . Chem. Soc. Rev. , 2015 . 44 2405 -2420 . DOI:10.1039/C4CS00329Bhttp://doi.org/10.1039/C4CS00329B .
Huang, K.; Rzayev, J . Well-defined organic nanotubes from multicomponent bottlebrush copolymers . J. Am. Chem. Soc. , 2009 . 131 6880 -6885 . DOI:10.1021/ja901936ghttp://doi.org/10.1021/ja901936g .
Kim, K. H.; Kim, M.; Moon, J.; Huh, J.; Bang, J . Bottlebrush copolymer as surface neutralizer for vertical alignment of block copolymer nanodomains in thin films . ACS Macro Lett. , 2021 . 10 346 -353 . DOI:10.1021/acsmacrolett.0c00879http://doi.org/10.1021/acsmacrolett.0c00879 .
Kawamoto, K.; Zhong, M.; Gadelrab, K. R.; Cheng, L. C.; Ross, C. A.; Alexander-Katz, A.; Johnson, J. A . Graft-through synthesis and assembly of janus bottlebrush polymers from A-branch-B diblock macromonomers . J. Am. Chem. Soc. , 2016 . 138 11501 -11504 . DOI:10.1021/jacs.6b07670http://doi.org/10.1021/jacs.6b07670 .
Vohidov, F.; Milling, L. E.; Chen, Q.; Zhang, W.; Bhagchandani, S.; Nguyen, H. V. T.; Irvine, D. J.; Johnson, J. A . ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy . Chem. Sci. , 2020 . 11 5974 -5986 . DOI:10.1039/D0SC02611Ehttp://doi.org/10.1039/D0SC02611E .
Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Lim, Y. H.; Finn, M.; Koberstein, J. T.; Turro, N. J.; Tirrell, D. A.; Grubbs, R. H . Core-clickable PEG-branch-azide bivalent-bottle-brush polymers by ROMP: grafting-through and clicking-to . J. Am. Chem. Soc. , 2011 . 133 559 -566 . DOI:10.1021/ja108441dhttp://doi.org/10.1021/ja108441d .
Sowers, M. A.; McCombs, J. R.; Wang, Y.; Paletta, J. T.; Morton, S. W.; Dreaden, E. C.; Boska, M. D.; Ottaviani, M. F.; Hammond, P. T.; Rajca, A . Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging . Nat. Commun. , 2014 . 5 1 -9. .
Choi, J.; Kim, H.; Do, T.; Moon, J.; Choe, Y.; Kim, J. G.; Bang, J . Influence of residual impurities on ring-opening metathesis polymerization after copper (I)-catalyzed alkyne-azide cycloaddition click reaction . J. Polym. Sci., Part A: Polym. Chem. , 2019 . 57 726 -737 . DOI:10.1002/pola.29317http://doi.org/10.1002/pola.29317 .
Radzinski, S. C.; Foster, J. C.; Matson, J. B . Preparation of bottlebrush polymers via a one-pot ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) grafting-through strategy . Macromol. Rapid Commun. , 2016 . 37 616 -621 . DOI:10.1002/marc.201500672http://doi.org/10.1002/marc.201500672 .
Cho, H. Y.; Krys, P.; Szcześniak, K.; Schroeder, H.; Park, S.; Jurga, S.; Buback, M.; Matyjaszewski, K . Synthesis of poly (OEOMA) using macromonomers via “grafting-through” ATRP . Macromolecules , 2015 . 48 6385 -6395 . DOI:10.1021/acs.macromol.5b01592http://doi.org/10.1021/acs.macromol.5b01592 .
Morandi, G.; Mantovani, G.; Montembault, V.; Haddleton, D. M.; Fontaine, L . Synthesis of graft copolymers from α-oxanorbornenyl macromonomers . New J. Chem. , 2007 . 31 1826 -1829 . DOI:10.1039/b705245fhttp://doi.org/10.1039/b705245f .
Zhou, Q.; Liu, Q.; Song, N.; Yang, J.; Ni, L . Amphiphilic reactive poly (glycidyl methacrylate)-block-poly (dimethyl siloxane)-block-poly (glycidyl methacrylate) triblock copolymer for the controlling nanodomain morphology of epoxy thermosets . Eur. Polym. J. , 2019 . 120 109236 DOI:10.1016/j.eurpolymj.2019.109236http://doi.org/10.1016/j.eurpolymj.2019.109236 .
Tang, B.; Kong, M.; Yang, Q.; Huang, Y.; Li, G . Toward simultaneous toughening and reinforcing of trifunctional epoxies by low loading flexible reactive triblock copolymers . RSC Adv. , 2018 . 8 17380 -17388 . DOI:10.1039/C8RA01017Jhttp://doi.org/10.1039/C8RA01017J .
Abbasi, M.; Faust, L.; Wilhelm, M . Comb and bottlebrush polymers with superior rheological and mechanical properties . Adv. Mater. , 2019 . 31 1806484 DOI:10.1002/adma.201806484http://doi.org/10.1002/adma.201806484 .
Tao, P.; Viswanath, A.; Li, Y.; Siegel, R. W.; Benicewicz, B. C.; Schadler, L. S . Bulk transparent epoxy nanocomposites filled with poly (glycidyl methacrylate) brush-grafted TiO2 nanoparticles . Polymer , 2013 . 54 1639 -1646 . DOI:10.1016/j.polymer.2013.01.032http://doi.org/10.1016/j.polymer.2013.01.032 .
Naguib, M.; Grassini, S.; Sangermano, M . Core/shell PBA/PMMA-PGMA nanoparticles to enhance the impact resistance of UV-cured epoxy systems . Macromol. Mater. Eng. , 2013 . 298 106 -112 . DOI:10.1002/mame.201200001http://doi.org/10.1002/mame.201200001 .
0
浏览量
4
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构