a.State Key Lboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
liujun@ciac.ac.cn
Scan for full text
Ning Wang, Ying-Jian Yu, Ru-Yan Zhao, 等. Active Layer Morphology Engineering of All-polymer Solar Cells by Systematically Tuning Molecular Weights of Polymer Donors/Acceptors[J]. Chinese Journal of Polymer Science, 2021,39(11):1449-1458.
Ning Wang, Ying-Jian Yu, Ru-Yan Zhao, et al. Active Layer Morphology Engineering of All-polymer Solar Cells by Systematically Tuning Molecular Weights of Polymer Donors/Acceptors[J]. Chinese Journal of Polymer Science, 2021,39(11):1449-1458.
Ning Wang, Ying-Jian Yu, Ru-Yan Zhao, 等. Active Layer Morphology Engineering of All-polymer Solar Cells by Systematically Tuning Molecular Weights of Polymer Donors/Acceptors[J]. Chinese Journal of Polymer Science, 2021,39(11):1449-1458. DOI: 10.1007/s10118-021-2609-9.
Ning Wang, Ying-Jian Yu, Ru-Yan Zhao, et al. Active Layer Morphology Engineering of All-polymer Solar Cells by Systematically Tuning Molecular Weights of Polymer Donors/Acceptors[J]. Chinese Journal of Polymer Science, 2021,39(11):1449-1458. DOI: 10.1007/s10118-021-2609-9.
In all-polymer solar cells (APSCs), number-average molecular weights (,M,n,s) of polymer donors and polymer acceptors play an important role in active layer morphology and photovoltaic performance. In this work, based on a series of APSCs with power conversion efficiency of approaching 10%, we study the effect of ,M,n,s of both polymer donor and polymer acceptor on active layer morphology and photovoltaic performance of APSCs. We select poly[4-(5-(4,8-bis(5-((2-butyloctyl)thio)thiophen-2-yl)-6-methylbenzo[1,2-,b,:4,5-,b,']dithiophen-2-yl)thiophen-2-yl)-5,6-difluoro-2-(2-hexyldecyl)-7-(5-methylthiophen-2-yl)-2,H,-benzo[,d,][1,2,3],triazole] (CD1) as the polymer donor and poly[4-(5-(5,10-bis(2-dodecylhexadecyl)-4,4,9,9-tetrafluuoro-7-methyl-4,5,9,10-tetrahydro3a,5,8,10-tetraaza-4,9-diborapyren-2-yl)thiophen-2-yl)-7-(5-methylthiophen-2-yl)benzo[,c,][1,2,5],thiadiazole] (PBN-14) as the polymer acceptor. The ,M,n,s of polymer donor CD1 are 14.0, 35.5 and 56.1 kg/mol, respectively, and the ,M,n,s of polymer acceptor PBN-14 are 32.7, 72.4 and 103.4 kg/mol, respectively. To get the desired biscontinueous fibrous network morphololgy of the polymer donor/polymer acceptor blends, at least one polymer should have high or medium ,M,n,. Moreover, when the ,M,n, of polymer acceptor is high, the active layer morphology and APSC device performance are insensitive to the ,M,n, of polymer donor. The optimal APSC device performance is obtained when the ,M,n, of both the polymer donor and the polymer acceptor are medium. These results provide a comprehensive and deep understanding on the interplay and the effect of ,M,n, of polymer donors and polymer acceptors in high-performance APSCs.
All-polymer solar cellsMolecular weightsPolymer aggregationActive layer morphology
Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J . Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions . Science , 1995 . 270 1789 -1791 . DOI:10.1126/science.270.5243.1789http://doi.org/10.1126/science.270.5243.1789 .
Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H . Nonfullerene acceptor molecules for bulk heterojunction organic solar cells . Chem. Rev. , 2018 . 118 3447 -3507 . DOI:10.1021/acs.chemrev.7b00535http://doi.org/10.1021/acs.chemrev.7b00535 .
Hou, J.; Inganas, O.; Friend, R. H.; Gao, F . Organic solar cells based on non-fullerene acceptors . Nat. Mater. , 2018 . 17 119 -128 . DOI:10.1038/nmat5063http://doi.org/10.1038/nmat5063 .
Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X . Non-fullerene acceptors for organic solar cells . Nat. Rev. Mater. , 2018 . 3 18003 DOI:10.1038/natrevmats.2018.3http://doi.org/10.1038/natrevmats.2018.3 .
Cheng, P.; Li, G.; Zhan, X.; Yang, Y . Next-generation organic photovoltaics based on non-fullerene acceptors . Nat. Photonics , 2018 . 12 131 -142 . DOI:10.1038/s41566-018-0104-9http://doi.org/10.1038/s41566-018-0104-9 .
Cui, Y.; Wang, Y.; Bergqvist, J.; Yao, H.; Xu, Y.; Gao, B.; Yang, C.; Zhang, S.; Inganäs, O.; Gao, F.; Hou, J . Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications . Nature Energy , 2019 . 4 768 -775 . DOI:10.1038/s41560-019-0448-5http://doi.org/10.1038/s41560-019-0448-5 .
Wu, Q.; Guo, J.; Sun, R.; Guo, J.; Jia, S.; Li, Y.; Wang, J.; Min, J . Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting . Nano Energy , 2019 . 61 559 -566. .
Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J . Recent advances, design guidelines, and prospects of all-polymer solar cells . Chem. Rev. , 2019 . 119 8028 -8086 . DOI:10.1021/acs.chemrev.9b00044http://doi.org/10.1021/acs.chemrev.9b00044 .
Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; Yan, H.; Zhao, D . Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor . Adv. Mater. , 2017 . 29 1700309 DOI:10.1002/adma.201700309http://doi.org/10.1002/adma.201700309 .
Guo, Y.; Li, Y.; Awartani, O.; Zhao, J.; Han, H.; Ade, H.; Zhao, D.; Yan, H . A vinylene-bridged perylenediimide-based polymeric acceptor enabling efficient all-polymer solar cells processed under ambient conditions . Adv. Mater. , 2016 . 28 8483 -8489 . DOI:10.1002/adma.201602387http://doi.org/10.1002/adma.201602387 .
Yang, J.; Xiao, B.; Tang, A.; Li, J.; Wang, X.; Zhou, E . Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications . Adv. Mater. , 2019 . 31 e1804699 DOI:10.1002/adma.201804699http://doi.org/10.1002/adma.201804699 .
Yang, J.; Yin, Y.; Chen, F.; Zhang, Y.; Xiao, B.; Zhao, L.; Zhou, E . Comparison of three n-type copolymers based on benzodithiophene and naphthalene diimide/perylene diimide/fused perylene diimides for all-polymer solar cells application . ACS Appl. Mater. Interfaces , 2018 . 10 23263 -23269 . DOI:10.1021/acsami.8b06306http://doi.org/10.1021/acsami.8b06306 .
Zhang, Q.; Chen, Z.; Ma, W.; Xie, Z.; Han, Y . Optimizing domain size and phase purity in all-polymer solar cells by solution ordered aggregation and confinement effect of the acceptor . J. Mater. Chem. C , 2019 . 7 12560 -12571 . DOI:10.1039/C9TC03697Khttp://doi.org/10.1039/C9TC03697K .
Wang, Y.; Zhu, Q.; Naveed, H. B.; Zhao, H.; Zhou, K.; Ma, W . Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells . Adv. Energy Mater. , 2020 . 10 1903609 DOI:10.1002/aenm.201903609http://doi.org/10.1002/aenm.201903609 .
Dou, C. D.; Ding, Z. C.; Zhang, Z. J.; Xie, Z. Y.; Liu, J.; Wang, L. X . Developing conjugated polymers with high electron affinity by replacing a C-C Unit with a B←N unit . Angew. Chem. Int. Ed. , 2015 . 54 3648 -3652 . DOI:10.1002/anie.201411973http://doi.org/10.1002/anie.201411973 .
Zhao, R.; Dou, C.; Xie, Z.; Liu, J.; Wang, L . Polymer acceptor based on B←N units with enhanced electron mobility for efficient all-polymer solar cells . Angew. Chem. Int. Ed. , 2016 . 55 5313 -5317 . DOI:10.1002/anie.201601305http://doi.org/10.1002/anie.201601305 .
Zhao, R.; Dou, C.; Liu, J.; Wang, L . An alternating polymer of two building blocks based on B←N unit: non-fullerene acceptor for organic photovoltaics . Chinese J. Polym. Sci. , 2016 . 35 198 -206. .
Dou, C.; Liu, J.; Wang, L . Conjugated polymers containing B←N unit as electron acceptors for all-polymer solar cells . Sci. China Chem. , 2017 . 60 450 -459 . DOI:10.1007/s11426-016-0503-xhttp://doi.org/10.1007/s11426-016-0503-x .
Shi, S.; Chen, P.; Chen, Y.; Feng, K.; Liu, B.; Chen, J.; Liao, Q.; Tu, B.; Luo, J.; Su, M.; Guo, H.; Kim, M. G.; Facchetti, A.; Guo, X . A Narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells . Adv. Mater. , 2019 . 31 e1905161 DOI:10.1002/adma.201905161http://doi.org/10.1002/adma.201905161 .
Sun, H.; Tang, Y.; Koh, C. W.; Ling, S.; Wang, R.; Yang, K.; Yu, J.; Shi, Y.; Wang, Y.; Woo, H. Y.; Guo, X . High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene . Adv. Mater. , 2019 . 31 e1807220 DOI:10.1002/adma.201807220http://doi.org/10.1002/adma.201807220 .
Lin, B.; Zhang, L.; Zhao, H.; Xu, X.; Zhou, K.; Zhang, S.; Gou, L.; Fan, B.; Zhang, L.; Yan, H.; Gu, X.; Ying, L.; Huang, F.; Cao, Y.; Ma, W . Molecular packing control enables excellent performance and mechanical property of blade-cast all-polymer solar cells . Nano Energy , 2019 . 59 277 -284 . DOI:10.1016/j.nanoen.2019.02.046http://doi.org/10.1016/j.nanoen.2019.02.046 .
Kim, W.; Choi, J.; Kim, J. H.; Kim, T.; Lee, C.; Lee, S.; Kim, M.; Kim, B. J.; Kim, T. S . Comparative study of the mechanical properties of all-polymer and fullerene–polymer solar cells: the importance of polymer acceptors for high fracture resistance . Chem. Mater. , 2018 . 30 2102 -2111 . DOI:10.1021/acs.chemmater.8b00172http://doi.org/10.1021/acs.chemmater.8b00172 .
Zhang, Y.; Xu, Y.; Ford, M. J.; Li, F.; Sun, J.; Ling, X.; Wang, Y.; Gu, J.; Yuan, J.; Ma, W . Thermally stable all-polymer solar cells with high tolerance on blend ratios . Adv. Energy Mater. , 2018 . 8 1800029 DOI:10.1002/aenm.201800029http://doi.org/10.1002/aenm.201800029 .
Lee, W.; Kim, J. H.; Kim, T.; Kim, S.; Lee, C.; Kim, J. S.; Ahn, H.; Kim, T. S.; Kim, B. J . Mechanically robust and high-performance ternary solar cells combining the merits of all-polymer and fullerene blends . J. Mater. Chem. A , 2018 . 6 4494 -4503 . DOI:10.1039/C7TA11382Jhttp://doi.org/10.1039/C7TA11382J .
Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J . From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control . Acc. Chem. Res. , 2016 . 49 2424 -2434 . DOI:10.1021/acs.accounts.6b00347http://doi.org/10.1021/acs.accounts.6b00347 .
Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M.; Yang, W.; Li, H.; Min, J . Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells . Joule , 2020 . 4 1070 -1086 . DOI:10.1016/j.joule.2020.03.019http://doi.org/10.1016/j.joule.2020.03.019 .
Yang, H.; Fan, H.; Wang, Z.; Yan, H.; Dong, Y.; Cui, C.; Ade, H.; Li, Y . Impact of isomer design on physicochemical properties and performance in high-efficiency all-polymer solar cells . Macromolecules , 2020 . 53 9026 -9033 . DOI:10.1021/acs.macromol.0c01405http://doi.org/10.1021/acs.macromol.0c01405 .
Sun, H.; Yu, H.; Shi, Y.; Yu, J.; Peng, Z.; Zhang, X.; Liu, B.; Wang, J.; Singh, R.; Lee, J.; Li, Y.; Wei, Z.; Liao, Q.; Kan, Z.; Ye, L.; Yan, H.; Gao, F.; Guo, X . A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells . Adv. Mater. , 2020 . 32 e2004183 DOI:10.1002/adma.202004183http://doi.org/10.1002/adma.202004183 .
Yu, H.; Qi, Z.; Yu, J.; Xiao, Y.; Sun, R.; Luo, Z.; Cheung, A. M. H.; Zhang, J.; Sun, H.; Zhou, W.; Chen, S.; Guo, X.; Lu, X.; Gao, F.; Min, J.; Yan, H . Fluorinated end group enables high-performance all-polymer solar cells with near-infrared absorption and enhanced device efficiency over 14% . Adv. Energy Mater. , 2020 . 11 2003171 .
Zhu, C.; Li, Z.; Zhong, W.; Peng, F.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y . Constructing a new polymer acceptor enabled non-halogenated solvent-processed all-polymer solar cell with an efficiency of 13.8% . Chem. Commun. , 2021 . 57 935 -938 . DOI:10.1039/D0CC07213Chttp://doi.org/10.1039/D0CC07213C .
Fan, Q.; An, Q.; Lin, Y.; Xia, Y.; Li, Q.; Zhang, M.; Su, W.; Peng, W.; Zhang, C.; Liu, F.; Hou, L.; Zhu, W.; Yu, D.; Xiao, M.; Moons, E.; Zhang, F.; Anthopoulos, T. D.; Inganäs, O.; Wang, E . Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation . Energy Environ. Sci. , 2020 . 13 5017 -5027 . DOI:10.1039/D0EE01828Ghttp://doi.org/10.1039/D0EE01828G .
Fu, H.; Li, Y.; Yu, J.; Wu, Z.; Fan, Q.; Lin, F.; Woo, H. Y.; Gao, F.; Zhu, Z.; Jen, A. K . High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor . J. Am. Chem. Soc , 2021 . 143 2665 -2670. .
Luo, Z.; Liu, T.; Ma, R.; Xiao, Y.; Zhan, L.; Zhang, G.; Sun, H.; Ni, F.; Chai, G.; Wang, J.; Zhong, C.; Zou, Y.; Guo, X.; Lu, X.; Chen, H.; Yan, H.; Yang, C . Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15% . Adv. Mater. , 2020 . 32 e2005942 DOI:10.1002/adma.202005942http://doi.org/10.1002/adma.202005942 .
Peng, F.; An, K.; Zhong, W.; Li, Z.; Ying, L.; Li, N.; Huang, Z.; Zhu, C.; Fan, B.; Huang, F.; Cao, Y . A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency . ACS Energy Lett. , 2020 . 5 3702 -3707 . DOI:10.1021/acsenergylett.0c02053http://doi.org/10.1021/acsenergylett.0c02053 .
Zhang, L.; Jia, T.; Pan, L.; Wu, B.; Wang, Z.; Gao, K.; Liu, F.; Duan, C.; Huang, F.; Cao, Y . 15.4% Efficiency all-polymer solar cells . Sci. China Chem. , 2021 . 64 408 -412. .
Wadsworth, A.; Hamid, Z.; Bidwell, M.; Ashraf, R. S.; Khan, J. I.; Anjum, D. H.; Cendra, C.; Yan, J.; Rezasoltani, E.; Guilbert, A. A. Y.; Azzouzi, M.; Gasparini, N.; Bannock, J. H.; Baran, D.; Wu, H.; de Mello, J. C.; Brabec, C. J.; Salleo, A.; Nelson, J.; Laquai, F.; McCulloch, I . Progress in poly (3-hexylthiophene) organic solar cells and the influence of its molecular weight on device performance . Adv. Energy Mater. , 2018 . 8 1801001 DOI:10.1002/aenm.201801001http://doi.org/10.1002/aenm.201801001 .
Zhang, Y.; Xu, X.; Lu, J.; Zhang, S . Effect of polymer molecular weight on J51 based organic solar cells . RSC Adv. , 2019 . 9 14657 -14661 . DOI:10.1039/C9RA02022Ehttp://doi.org/10.1039/C9RA02022E .
Zhang, Z.; Wang, T.; Ding, Z.; Miao, J.; Wang, J.; Dou, C.; Meng, B.; Liu, J.; Wang, L . Small molecular donor/polymer acceptor type organic solar cells: effect of molecular weight on active layer morphology . Macromolecules , 2019 . 52 8682 -8689 . DOI:10.1021/acs.macromol.9b01666http://doi.org/10.1021/acs.macromol.9b01666 .
Wu, Y.; Schneider, S.; Walter, C.; Chowdhury, A. H.; Bahrami, B.; Wu, H. C.; Qiao, Q.; Toney, M. F.; Bao, Z . Fine-tuning semiconducting polymer self-aggregation and crystallinity enables optimal morphology and high-performance printed all-polymer solar cells . J. Am. Chem. Soc. , 2020 . 142 392 -406 . DOI:10.1021/jacs.9b10935http://doi.org/10.1021/jacs.9b10935 .
Park, J. S.; Choi, N.; Lee, C.; Lee, S.; Ha, J. W.; Hwang, D. H.; Kim, B. J . Elucidating roles of polymer donor aggregation in all-polymer and non-fullerene small-molecule-polymer solar cells . Chem. Mater. , 2020 . 32 3585 -3596 . DOI:10.1021/acs.chemmater.0c00783http://doi.org/10.1021/acs.chemmater.0c00783 .
Fan, B.; Ying, L.; Wang, Z.; He, B.; Jiang, X. F.; Huang, F.; Cao, Y . Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9% . Energy Environ. Sci. , 2017 . 10 1243 -1251 . DOI:10.1039/C7EE00619Ehttp://doi.org/10.1039/C7EE00619E .
Wang, N.; Yu, Y.; Zhao, R.; Ding, Z.; Liu, J.; Wang, L . Improving active layer morphology of all-polymer solar cells by solution temperature . Macromolecules , 2020 . 53 3325 -3331 . DOI:10.1021/acs.macromol.0c00633http://doi.org/10.1021/acs.macromol.0c00633 .
Wang, N.; Long, X.; Ding, Z.; Feng, J.; Lin, B.; Ma, W.; Dou, C.; Liu, J.; Wang, L . Improving active layer morphology of all-polymer solar cells by dissolving the two polymers individually . Macromolecules , 2019 . 52 2402 -2410 . DOI:10.1021/acs.macromol.9b00057http://doi.org/10.1021/acs.macromol.9b00057 .
Chen, S.; An, Y.; Dutta, G. K.; Kim, Y.; Zhang, Z. G.; Li, Y.; Yang, C . A synergetic effect of molecular weight and fluorine in all-polymer solar cells with enhanced performance . Adv. Funct. Mater. , 2017 . 27 1603564 DOI:10.1002/adfm.201603564http://doi.org/10.1002/adfm.201603564 .
Kang, H.; Uddin, M. A.; Lee, C.; Kim, K. H.; Nguyen, T. L.; Lee, W.; Li, Y.; Wang, C.; Woo, H. Y.; Kim, B. J . Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation . J. Am. Chem. Soc. , 2015 . 137 2359 -2365 . DOI:10.1021/ja5123182http://doi.org/10.1021/ja5123182 .
Tran, D. K.; Robitaille, A.; Hai, I. J.; Ding, X.; Kuzuhara, D.; Koganezawa, T.; Chiu, Y. C.; Leclerc, M.; Jenekhe, S. A. . , Elucidating the impact of molecular weight on morphology, charge transport, photophysics and performance of all-polymer solar cells . J. Mater. Chem. A , 2020 . 8 21070 -21083 . DOI:10.1039/D0TA08195Ghttp://doi.org/10.1039/D0TA08195G .
Li, Z.; Zhong, W.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y . Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability . Nano Energy , 2019 . 64 103931 DOI:10.1016/j.nanoen.2019.103931http://doi.org/10.1016/j.nanoen.2019.103931 .
Wang, G.; Eastham, N. D.; Aldrich, T. J.; Ma, B.; Manley, E. F.; Chen, Z.; Chen, L. X.; de la Cruz, M. O.; Chang, R. P. H.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J . Photoactive blend morphology engineering through systematically tuning aggregation in all-polymer solar cells . Adv. Energy Mater. , 2018 . 8 1702173 DOI:10.1002/aenm.201702173http://doi.org/10.1002/aenm.201702173 .
Zhou, N.; Dudnik, A. S.; Li, T. I.; Manley, E. F.; Aldrich, T. J.; Guo, P.; Liao, H. C.; Chen, Z.; Chen, L. X.; Chang, R. P.; Facchetti, A.; Olvera de la Cruz, M.; Marks, T. J . All-polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers . J. Am. Chem. Soc. , 2016 . 138 1240 -1251 . DOI:10.1021/jacs.5b10735http://doi.org/10.1021/jacs.5b10735 .
Zhao, R.; Wang, N.; Yu, Y.; Liu, J . Organoboron polymer for 10% efficiency all-polymer solar cells . Chem. Mater. , 2020 . 32 1308 -1314 . DOI:10.1021/acs.chemmater.9b04997http://doi.org/10.1021/acs.chemmater.9b04997 .
Miao, J.; Meng, B.; Ding, Z.; Liu, J.; Wang, L . Organic solar cells based on small molecule donors and polymer acceptors operating at 150 °C . J. Mater. Chem. A , 2020 . 8 10983 -10988 . DOI:10.1039/D0TA02865Ghttp://doi.org/10.1039/D0TA02865G .
Zhao, R.; Lin, B.; Feng, J.; Dou, C.; Ding, Z.; Ma, W.; Liu, J.; Wang, L . Amorphous polymer acceptor containing B ← N units matches various polymer donors for all-polymer solar cells . Macromolecules , 2019 . 52 7081 -7088 . DOI:10.1021/acs.macromol.9b01394http://doi.org/10.1021/acs.macromol.9b01394 .
Du, J.; Hu, K.; Meng, L.; Angunawela, I.; Zhang, J.; Qin, S.; Liebman-Pelaez, A.; Zhu, C.; Zhang, Z.; Ade, H.; Li, Y . High-performance all-polymer solar cells: synthesis of polymer acceptor by a random ternary copolymerization strategy . Angew. Chem. Int. Ed. , 2020 . 59 15181 -15185 . DOI:10.1002/anie.202005357http://doi.org/10.1002/anie.202005357 .
Xie, Q.; Liao, X.; Chen, L.; Zhang, M.; Gao, K.; Huang, B.; Xu, H.; Liu, F.; Jen, A. K. Y.; Chen, Y . Random copolymerization realized high efficient polymer solar cells with a record fill factor near 80% . Nano Energy , 2019 . 61 228 -235 . DOI:10.1016/j.nanoen.2019.04.048http://doi.org/10.1016/j.nanoen.2019.04.048 .
Yuan, J.; Qiu, L.; Zhang, Z.; Li, Y.; He, Y.; Jiang, L.; Zou, Y . A simple strategy to the side chain functionalization on the quinoxaline unit for efficient polymer solar cells . Chem. Commun. , 2016 . 52 6881 -6884 . DOI:10.1039/C6CC01771Ahttp://doi.org/10.1039/C6CC01771A .
Liu, T.; Huo, L.; Chandrabose, S.; Chen, K.; Han, G.; Qi, F.; Meng, X.; Xie, D.; Ma, W.; Yi, Y.; Hodgkiss, J. M.; Liu, F.; Wang, J.; Yang, C.; Sun, Y . Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells . Adv. Mater. , 2018 . 30 e1707353 DOI:10.1002/adma.201707353http://doi.org/10.1002/adma.201707353 .
Xia, T.; Cai, Y.; Fu, H.; Sun, Y . Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells . Sci. China Chem. , 2019 . 62 662 -668 . DOI:10.1007/s11426-019-9478-2http://doi.org/10.1007/s11426-019-9478-2 .
Song, J.; Ye, L.; Li, C.; Xu, J.; Chandrabose, S.; Weng, K.; Cai, Y.; Xie, Y.; O'Reilly, P.; Chen, K.; Zhou, J.; Zhou, Y.; Hodgkiss, J. M.; Liu, F.; Sun, Y . An optimized fibril network morphology enables high-efficiency and ambient-stable polymer solar cells . Adv. Sci. , 2020 . 7 2001986 DOI:10.1002/advs.202001986http://doi.org/10.1002/advs.202001986 .
Xie, Y.; Cai, Y.; Zhu, L.; Xia, R.; Ye, L.; Feng, X.; Yip, H. L.; Liu, F.; Lu, G.; Tan, S.; Sun, Y . Fibril network strategy enables high-performance semitransparent organic solar cells . Adv. Funct. Mater. , 2020 . 30 2002181 DOI:10.1002/adfm.202002181http://doi.org/10.1002/adfm.202002181 .
Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E . Device physics of polymer:fullerene bulk heterojunction solar cells . Adv. Mater. , 2007 . 19 1551 -1566 . DOI:10.1002/adma.200601093http://doi.org/10.1002/adma.200601093 .
Li, M.; Zhou, Y.; Zhang, J.; Song, J.; Bo, Z . Tuning the dipole moments of nonfullerene acceptors with an asymmetric terminal strategy for highly efficient organic solar cells . J. Mater. Chem. A , 2019 . 7 8889 -8896 . DOI:10.1039/C8TA12530Ahttp://doi.org/10.1039/C8TA12530A .
0
浏览量
5
Downloads
1
CSCD
关联资源
相关文章
相关作者
相关机构