1.State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
lxh83@suda.edu.cn (X.H.L.)
tuyingfeng@suda.edu.cn (Y.F.T.)
Scan for full text
Yan-Yan Tu, Xue-Ting Wan, Jie Huan, 等. The Effect of Trifluoroacetic Acid on Molecular Weight Determination of Polyesters: An
Yan-Yan Tu, Xue-Ting Wan, Jie Huan, et al. The Effect of Trifluoroacetic Acid on Molecular Weight Determination of Polyesters: An
Yan-Yan Tu, Xue-Ting Wan, Jie Huan, 等. The Effect of Trifluoroacetic Acid on Molecular Weight Determination of Polyesters: An
Yan-Yan Tu, Xue-Ting Wan, Jie Huan, et al. The Effect of Trifluoroacetic Acid on Molecular Weight Determination of Polyesters: An
Due to the poor solubility of aromatic polyesters in common organic solvents, trifluoroacetic acid is usually used as a co-solvent to increase their solubility for characterizations. However, only few studies have reported the side reactions induced by it. We present here the application of ,in situ,1,H-NMR techniques to explore its effect on the hydroxyl end-groups, which are usually used for the molecular weight determination of polyesters by end-group estimation method. Using bis(2-hydroxyethyl) terephthalate (BHET) as model compound,1,H quantitative NMR results show the peak integration of hydroxyethyl end-groups decreased with time ,via, a pseudo-first-order kinetics in d-trifluoroacetic acid/d-chloroform mixture solvent (1:10,V,:,V,). This is due to the esterification of hydroxyethyl groups with trifluoroacetic acid, revealed by the ,1,H-,13,C gradient-enhanced heteronuclear multiple bond correlation (gHMBC) spectrum. The mixtures of dimethyl terephthalate and BHET with different molar ratios were used to represent poly(ethylene terephthalate) (PET) with different degrees of polymerization, and the effect of trifluoroacetic acid on the estimation of hydroxyethyl groups and subsequent molecular weight determination of polyesters was studied. Our results show that if a relative error of 5% is allowed, the NMR measurements must be finished within 1.3 h of solution preparation at 25 °C in the mixture solvent. The results were confirmed in PET sample, while in poly(ethylene adipate), the obtained esterifaction constant is faster that those in aromatic system. The results can be applied to other polymer systems with alcohol functionalized groups, and used as a guideline for the characterization of polyesters and polyethers by end-group estimation method.
PolyestersNMR spectroscopyTrifluoroacetic acidMolecular weight
Scheirs, J.; Long, T. E. in Modern polyesters: chemistry and technology of polyesters and copolyesters. John Wiley and Sons, Chichester, 2003.
Kalakkunnath, S.; Kalika, D. S. . Dynamic mechanical and dielectric relaxtion characteristics of poly(trimethylene terephthalate) . Polymer , 2006 . 47 7085 -7094 . DOI:10.1016/j.polymer.2006.08.005http://doi.org/10.1016/j.polymer.2006.08.005 .
Lotti, N.; Colonna, M.; Fiorini, M.; Finelli, L.; Berti, C. . Poly(butylene terephthalate) modified with ethoxylated bisphenol S with increased glass transition temperature and improved thermal stability . Polymer , 2011 . 52 904 -911 . DOI:10.1016/j.polymer.2011.01.018http://doi.org/10.1016/j.polymer.2011.01.018 .
Gubbels, E.; Jasinska-Walc, L.; Merino, D. H.; Goossens, H.; Koning, C. . Solid-state modification of poly(butylene terephthalate) with a bio-based fatty acid dimer diol furnishing copolyesters with unique morphologies . Macromolecules , 2013 . 46 3975 -3984 . DOI:10.1021/ma400559ghttp://doi.org/10.1021/ma400559g .
Zhang, W.; Li, J.; Li, H.; Jiang, S.; An, L. . Temperature dependence of deformation behavior of poly(butylene terephthalate) . Polymer , 2018 . 143 309 -315 . DOI:10.1016/j.polymer.2018.04.030http://doi.org/10.1016/j.polymer.2018.04.030 .
Zekriardehani, S.; Joshi, A. S.; Jabarin, S. A.; Gidley, D. W.; Coleman, M. R. . Effect of dimethyl terephthalate and dimethyl isophthalate on the free volume and barrier properties of poly(ethylene terephthalate) (PET): amorphous PET . Macromolecules , 2018 . 51 456 -467 . DOI:10.1021/acs.macromol.7b02230http://doi.org/10.1021/acs.macromol.7b02230 .
Schyns, Z. O. G.; Shaver, M. P. . Mechanical recycling of packaging plastics: a review . Macromol. Rapid Commun. , 2021 . 42 2000415 DOI:10.1002/marc.202000415http://doi.org/10.1002/marc.202000415 .
Qiu, J.; Ma, S.; Wang, S.; Tang, Z.; Li, Q.; Tian, A.; Xu, X.; Wang, B.; Lu, N.; Zhu, J. . Upcycling of polyethylene terephthalate to continuously reprocessable vitrimers through reactive extrusion . Macromolecules , 2021 . 54 703 -712 . DOI:10.1021/acs.macromol.0c02359http://doi.org/10.1021/acs.macromol.0c02359 .
Fagnani, D. E.; Tami, J. L.; Copley, G.; Clemons, M. N.; Getzler, Y. D. Y. L.; McNeil, A. J. . 100th Anniversary of macromolecular science viewpoint: Redefining sustainable polymers . ACS Macro Lett. , 2021 . 10 41 -53 . DOI:10.1021/acsmacrolett.0c00789http://doi.org/10.1021/acsmacrolett.0c00789 .
Li, Y.; Makita, Y.; Zhang, G.; Rui, G.; Li, Z.; Zhong, G.; Miyoshi, T.; Huang, H.; Zhu, L. . Effects of rigid amorphous fraction and lamellar crystal orientation on electrical insulation of poly(ethylene terephthalate) films . Macromolecules , 2020 . 53 -3977. .
Chou, C.; Liu, Y.; Zhang, Y.; Hsueh, C.; Yang, F.; Lee, S. . Thermomechanical deformation of polyethylene-terephthalate artifcial muscles . Polymer , 2020 . 210 123013 DOI:10.1016/j.polymer.2020.123013http://doi.org/10.1016/j.polymer.2020.123013 .
Narimisa, M.; Onyshchenko, Y.; Morent, R.; De Geyter, N. . Improvement of PET surface modifcation using an atmospheric pressure plasma jet with different shielding gases . Polymer , 2021 . 215 123421 DOI:10.1016/j.polymer.2021.123421http://doi.org/10.1016/j.polymer.2021.123421 .
Mori, S. . Size exclusion chromatography of poly(ethylene terephthalate) using hexafluoro-2-propanol as the mobile phase . Anal. Chem. , 1989 . 61 1321 -1325 . DOI:10.1021/ac00188a005http://doi.org/10.1021/ac00188a005 .
Sanches, N. B.; Dias, M. L.; Pacheco, E. B. A. V. . Comparative techniques for molecular weight evaluation of poly(ethylene terephthalate) (PET) . Polym. Test. , 2005 . 24 688 -693 . DOI:10.1016/j.polymertesting.2005.05.006http://doi.org/10.1016/j.polymertesting.2005.05.006 .
Liu, F.; Zhang, J.; Wang, J.; Na, H.; Zhu, J. . Incorporation of 1,4-cyclohexanedicarboxylic acid into poly(butylene terephthalate)-b-poly(tetramethylene glycol) to alter thermal properties without compromising tensile and elastic properties . RSC Adv. , 2015 . 5 94091 -94098 . DOI:10.1039/C5RA18389Hhttp://doi.org/10.1039/C5RA18389H .
Tanaka, K.; Oouchi, M.; Hayashi, F.; Maeda, H.; Waki, H. . Structural analysis of the end groups and substructures of commercial poly(ethylene terephthalate) by multiple-WET 1H/13C NMR . Macromolecules , 2016 . 49 5750 -5754 . DOI:10.1021/acs.macromol.6b01105http://doi.org/10.1021/acs.macromol.6b01105 .
Chen, J.; Chen, D.; Huang, W.; Yang, X.; Li, X.; Tu, Y.; Zhu, X. . A one pot facile synthesis of poly(butylene terephthalate)-block-poly(tetramethylene oxide) alternative multiblock copolymers via PROP method . Polymer , 2016 . 107 29 -36 . DOI:10.1016/j.polymer.2016.11.001http://doi.org/10.1016/j.polymer.2016.11.001 .
Zhu, X.; Gu, J.; Li, X.; Yang, X.; Wang, L.; Li, Y.; Li, H.; Tu, Y. . PROP: an in situ cascade polymerization method for the facile synthesis of polyesters . Polym. Chem. , 2017 . 8 1953 -1962 . DOI:10.1039/C7PY00068Ehttp://doi.org/10.1039/C7PY00068E .
Paszkiewicz, S.; Szymczyk, A.; Pawlikowska, D.; Irska, I.; Taraghi, I.; Pilawka, R.; Gu, J.; Li, X.; Tu, Y.; Piesowicz, E. . Synthesis and characterization of poly(ethylene terephthalate-co-1,4-cyclohexanedimethylene terephtlatate)-block-poly(tetramethylene oxide) copolymers . RSC Adv. , 2017 . 7 41745 -41754 . DOI:10.1039/C7RA07172Hhttp://doi.org/10.1039/C7RA07172H .
Wang, G.; Jiang, M.; Zhang, Q.; Wang, R.; Liang, Q.; Zhou, G. . New bio-based copolyesters poly(trimethylene 2,5-thiophenedicarboxylate-co-trimethylene terephthalate): synthesis, crystallization behavior, thermal and mechanical properties . Polymer , 2019 . 173 27 -33 . DOI:10.1016/j.polymer.2019.04.024http://doi.org/10.1016/j.polymer.2019.04.024 .
Xie, H.; Lu, H.; Zhang, Z.; Li, X.; Yang, X.; Tu, Y. . Effect of block number and weight fraction on the structure and properties of poly(butylene terephthalate)-block-poly(tetramethylene oxide) multiblock copolymers . Macromolecules , 2021 . 54 2703 -2710 . DOI:10.1021/acs.macromol.0c02793http://doi.org/10.1021/acs.macromol.0c02793 .
Zhao, Y.; Li, Y.; Xie, D.; Chen, J. . Effect of chain extrender on the compatibility, mechanical and gas barrier properties of poly(butylene adipate-co-terephthalate)/poly(propylene carbonate) bio-composites . J. Appl. Polym. Sci. , 2021 . 138 50487 DOI:10.1002/app.50487http://doi.org/10.1002/app.50487 .
Cheng, H. N.; English, A. D. in NMR spectroscopy of polymers in solution and in the solid state. American Chemical Society, Washington DC, 2002.
Shit, S. C.; Maiti, S. . Application of NMR spectroscopy in molecular weight determination of polymers . Eur. Polym. J. , 1986 . 22 1001 -1008 . DOI:10.1016/0014-3057(86)90082-0http://doi.org/10.1016/0014-3057(86)90082-0 .
Hariharan, R.; Pinkus, A. . Useful NMR solvent mixture for polyesters: trifluoroacetic acid-d/chloroform-d . Polym. Bull. , 1993 . 30 91 -95 . DOI:10.1007/BF00296239http://doi.org/10.1007/BF00296239 .
Päch, M.; Zehm, D.; Lange, M.; Dambowsky, I.; Weiss, J.; Laschewsky, A. . Universal polymer analysis by 1H NMR using complementary trimethylsilyl end groups . J. Am. Chem. Soc. , 2010 . 132 8757 -8765 . DOI:10.1021/ja102096uhttp://doi.org/10.1021/ja102096u .
Li, X.; McCord, E. F.; Baiagern, S.; Fox, P.; Howell, J. L.; Sahooc, S. K.; Rinaldi, P. L. . 2D-NMR studies of a model for Krytox® fluoropolymers . Magn. Reson. Chem. , 2011 . 49 413 -424 . DOI:10.1002/mrc.2763http://doi.org/10.1002/mrc.2763 .
Chen, D.; Gao, L.; Li, X.; Tu, Y. . Precise molecular weight determination and structure characterization of end-functionalized polymers: an NMR approach via combination of one-dimensional and two-dimensional techniques . Chinese J. Polym. Sci. , 2017 . 35 681 -692 . DOI:10.1007/s10118-017-1919-4http://doi.org/10.1007/s10118-017-1919-4 .
Wang, W.; Wu, F.; Lu, H.; Li, X.; Yang, X.; Tu, Y. . A cascade polymerization method for the property modification of poly(butylene terephthalate) by the incorporation of isosorbide . ACS Appl. Polym. Mater. , 2019 . 1 2313 -2321 . DOI:10.1021/acsapm.9b00332http://doi.org/10.1021/acsapm.9b00332 .
Xu, S.; Wu, F.; Li, Z.; Zhu, X.; Li, X.; Wang, L.; Li, Y.; Tu, Y. . A green cascade polymerization method for the facile synthesis of sustainable poly(butylene-co-decylene terephthalate) copolymers . Polymer , 2019 . 178 121591 DOI:10.1016/j.polymer.2019.121591http://doi.org/10.1016/j.polymer.2019.121591 .
Li, Z.; Li, Y.; Zhao, Y.; Wang, H.; Zhang, Y.; Song, B.; Li, X.; Lu, S.; Hao, X.; Hla, S.; Tu, Y.; Li, X. . Synthesis of metallopolymers and direct visualization of the single polymer chain . J. Am. Chem. Soc. , 2020 . 142 6196 -6205 . DOI:10.1021/jacs.0c00110http://doi.org/10.1021/jacs.0c00110 .
Li, H.; Xu, S.; Li, J.; Tu, Y.; Li, X.; Tu, Y.; Li, J.; Wang, Y.; Li, Z. . Biodegradable all polyester-based multiblock copolymer elastomers with controlled properties . Polym. Chem. , 2021 . 12 1837 -1845 . DOI:10.1039/D1PY00076Dhttp://doi.org/10.1039/D1PY00076D .
Zhao, Y.; Gao, L.; Lu, H.; Li, X.; Tu, Y.; Chang, T. . The non-free draining effect for small cyclics in solution . Polymer , 2021 . 213 123202 DOI:10.1016/j.polymer.2020.123202http://doi.org/10.1016/j.polymer.2020.123202 .
Youk, J. H.; Kambour, R. P.; MacKnight, W. J. . Polymerization of ethylene terephthalate cyclic oligomers with antimony trioxide . Macromolecules , 2000 . 33 3594 -3599 . DOI:10.1021/ma991838dhttp://doi.org/10.1021/ma991838d .
Jadhav, A. L.; Malkar, R. S.; Yadav, G. D. . Zn- and Ti-modified hydrotalcites for transesterification of dimethyl terephthalate with ethylene glycol: effect of the metal oxide and catalyst synthesis method . ACS Omega , 2020 . 5 2088 -2096 . DOI:10.1021/acsomega.9b02230http://doi.org/10.1021/acsomega.9b02230 .
Kavanagh, P.; Knipe, A. C.; Watts, W. E. . Kinetic study of the esterification of arylmethanols in trifluoroacetic acid: mechanistic change consequent upon aryl substituent effects . J. Chem. Soc., Chem. Commun. , 1979 . 905 -906. .
Gillen, C. J.; Knipe, A. C.; Watts, W. E. . A kinetic study of the mechanism of esterification of 1-arylethanols in trifluoroacetic acid . Tetrahedron Lett. , 1981 . 22 597 -600 . DOI:10.1016/S0040-4039(01)90166-2http://doi.org/10.1016/S0040-4039(01)90166-2 .
0
浏览量
7
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621