a.State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
b.Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
c.Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
d.Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
luyonglai@mail.buct.edu.cn
Scan for full text
Shou-Jun Li, Jing-Chao Li, Pei-Zhi Ji, 等. Bubble-templated Construction of Three-dimensional Ceramic Network for Enhanced Thermal Conductivity of Silicone Rubber Composites[J]. Chinese Journal of Polymer Science, 2021,39(7):789-795.
Shou-Jun Li, Jing-Chao Li, Pei-Zhi Ji, et al. Bubble-templated Construction of Three-dimensional Ceramic Network for Enhanced Thermal Conductivity of Silicone Rubber Composites[J]. Chinese Journal of Polymer Science, 2021,39(7):789-795.
Shou-Jun Li, Jing-Chao Li, Pei-Zhi Ji, 等. Bubble-templated Construction of Three-dimensional Ceramic Network for Enhanced Thermal Conductivity of Silicone Rubber Composites[J]. Chinese Journal of Polymer Science, 2021,39(7):789-795. DOI: 10.1007/s10118-021-2581-4.
Shou-Jun Li, Jing-Chao Li, Pei-Zhi Ji, et al. Bubble-templated Construction of Three-dimensional Ceramic Network for Enhanced Thermal Conductivity of Silicone Rubber Composites[J]. Chinese Journal of Polymer Science, 2021,39(7):789-795. DOI: 10.1007/s10118-021-2581-4.
With the continuous development of the electronics industry, the energy density of modern electronic devices increases constantly, thus releasing a lot of heat during operation. Modern electronic devices take higher and higher request to the thermal interface materials. Achieving high thermal conductivity needs to establish an interconnecting thermal conductivity network in the matrix. For this purpose, the suspension of Al,2,O,3, and curdlan was first foamed to construct a bubble-templated continuous ceramic framework. Owing to the rapid gelation property of curdlan, we can easily remove moisture by hot air drying. Finally, the high thermally conductive composites are prepared by vacuum impregnation of silicone rubber. The result showed that composites prepared by our method have higher thermal conductivity than the samples obtained by traditional method. The thermal conductivity of the prepared composite material reached 1.253 W·m,–1,·K,–1, when the alumina content was 69.6 wt%. This facile method is expected to be applied to the preparation of high-performance thermal interface materials.
Thermally conductive networkAluminaCurdlanThermal conductivity
Ren, L.; Li, Q.; Lu, J.; Zeng, X.; Sun, R.; Wu, J.; Xu, J. B.; Wong, C. P. . Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance . Compos. Part A: Appl. Sci. Manufact. , 2018 . 107 561 -569 . DOI:10.1016/j.compositesa.2018.02.010http://doi.org/10.1016/j.compositesa.2018.02.010 .
Shen, B.; Zhai, W.; Zheng, W. . Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding . Adv. Funct. Mater. , 2014 . 24 4542 -4548 . DOI:10.1002/adfm.201400079http://doi.org/10.1002/adfm.201400079 .
Mehra, N.; Mu, L.; Ji, T.; Yang, X.; Kong, J.; Gu, J.; Zhu, J. . Thermal transport in polymeric materials and across composite interfaces . Appl. Mater. Today , 2018 . 12 92 -130 . DOI:10.1016/j.apmt.2018.04.004http://doi.org/10.1016/j.apmt.2018.04.004 .
Prasher, R. . Thermal interface materials: historical perspective, status, and future directions . Proc. IEEE , 2006 . 94 1571 -1586 . DOI:10.1109/JPROC.2006.879796http://doi.org/10.1109/JPROC.2006.879796 .
Hansson, J.; Nilsson, T. M.; Ye, L.; Liu, J. . Novel nanostructured thermal interface materials: a review . Int. Mater. Rev. , 2018 . 63 22 -45 . DOI:10.1080/09506608.2017.1301014http://doi.org/10.1080/09506608.2017.1301014 .
Razeeb, K. M.; Dalton, E.; Cross, G. L. W.; Robinson, A. J. . Present and future thermal interface materials for electronic devices . Int. Mater. Rev. , 2018 . 63 1 -21 . DOI:10.1080/09506608.2017.1296605http://doi.org/10.1080/09506608.2017.1296605 .
Li, J.; Zhao, X.; Wu, W.; Ji, X.; Lu, Y.; Zhang, L. . Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity . Chem. Eng. J. , 2021 . 415 129054 DOI:10.1016/j.cej.2021.129054http://doi.org/10.1016/j.cej.2021.129054 .
Wang, R.; Cheng, H.; Gong, Y.; Wang, F.; Ding, X.; Hu, R.; Zhang, X.; He, J.; Tian, X. . Highly thermally conductive polymer composite originated from assembly of boron nitride at an oil-water interface . ACS Appl. Mater. Interfaces , 2019 . 11 42818 -42826 . DOI:10.1021/acsami.9b15259http://doi.org/10.1021/acsami.9b15259 .
Leung, S. N. . Thermally conductive polymer composites and nanocomposites: processing-structure-property relationships . Compos. Part B: Eng. , 2018 . 150 78 -92 . DOI:10.1016/j.compositesb.2018.05.056http://doi.org/10.1016/j.compositesb.2018.05.056 .
Li, J.; Li, F.; Zhao, X.; Zhang, W.; Li, S.; Lu, Y.; Zhang, L. . Jelly-Inspired Construction of the Three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites . ACS Appl. Electron. Mater. , 2020 . 2 1661 -1669 . DOI:10.1021/acsaelm.0c00227http://doi.org/10.1021/acsaelm.0c00227 .
Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. . Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN . ACS Appl. Mater. Interfaces , 2017 . 9 13544 -13553 . DOI:10.1021/acsami.7b02410http://doi.org/10.1021/acsami.7b02410 .
Akishin, G.; Turnaev, S.; Vaispapir, V. Y.; Gorbunova, M.; Makurin, Y. N.; Kiiko, V.; Ivanovskii, A. . Thermal conductivity of beryllium oxide ceramic . Refractor. Indust. Ceramics , 2009 . 50 465 -468 . DOI:10.1007/s11148-010-9239-zhttp://doi.org/10.1007/s11148-010-9239-z .
Kholmanov, I.; Kim, J.; Ou, E.; Ruoff, R. S.; Shi, L. . Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials . ACS Nano , 2015 . 9 11699 -11707 . DOI:10.1021/acsnano.5b02917http://doi.org/10.1021/acsnano.5b02917 .
Fan, Z.; Gong, F.; Nguyen, S. T.; Duong, H. M. . Advanced multifunctional graphene aerogel–poly(methyl methacrylate) composites: experiments and modeling . Carbon , 2015 . 81 396 -404 . DOI:10.1016/j.carbon.2014.09.072http://doi.org/10.1016/j.carbon.2014.09.072 .
Liu, Z.; Chen, Y.; Li, Y.; Dai, W.; Yan, Q.; Alam, F. E.; Du, S.; Wang, Z.; Nishimura, K.; Jiang, N. . Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement . Nanoscale , 2019 . 11 17600 -17606 . DOI:10.1039/C9NR03968Fhttp://doi.org/10.1039/C9NR03968F .
Zeng, X.; Yao, Y.; Gong, Z.; Wang, F.; Sun, R.; Xu, J.; Wong, C. P. . Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement . Small , 2015 . 11 6205 -6213 . DOI:10.1002/smll.201502173http://doi.org/10.1002/smll.201502173 .
Li, J.; Zhao, X.; Zhang, Z.; Xian, Y.; Lin, Y.; Ji, X.; Lu, Y.; Zhang, L. . Construction of interconnected Al2O3 doped rGO network in natural rubber nanocomposites to achieve significant thermal conductivity and mechanical strength enhancement . Compos. Sci. Technol. , 2020 . 186 107930 DOI:10.1016/j.compscitech.2019.107930http://doi.org/10.1016/j.compscitech.2019.107930 .
Li, J.; Zhao, X.; Wu, W.; Zhang, Z.; Xian, Y.; Lin, Y.; Lu, Y.; Zhang, L. . Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability . Carbon , 2020 . 162 46 -55 . DOI:10.1016/j.carbon.2020.02.012http://doi.org/10.1016/j.carbon.2020.02.012 .
Song, J.; Wu, L.; Zhang, Y. . Thermal conductivity enhancement of alumina/silicone rubber composites through constructing a thermally conductive 3D framework . Polym. Bull. , 2020 . 77.4 2139 -2153. .
Kim, H.; Lee, S.; Han, Y.; Park, J. . Control of pore size in ceramic foams: influence of surfactant concentration . Mater. Chem. Phys. , 2009 . 113 441 -444 . DOI:10.1016/j.matchemphys.2008.07.099http://doi.org/10.1016/j.matchemphys.2008.07.099 .
Han, Y.; Li, C.; Bian, C.; Li, S.; Wang, C. A. . Porous anorthite ceramics with ultra-low thermal conductivity . J. Eur. Ceramic Soc. , 2013 . 33 2573 -2578 . DOI:10.1016/j.jeurceramsoc.2013.04.006http://doi.org/10.1016/j.jeurceramsoc.2013.04.006 .
Meng, Y.; Lyu, F.; Xu, X.; Zhang, L. . Recent advances in chain conformation and bioactivities of triple-helix polysaccharides . Biomacromolecules , 2020 . 21 1653 -1677 . DOI:10.1021/acs.biomac.9b01644http://doi.org/10.1021/acs.biomac.9b01644 .
Zhang, H.; Nishinari, K.; Williams, M. A.; Foster, T. J.; Norton, I. T. . A molecular description of the gelation mechanism of curdlan . Inter. J. Biologic. Macromol. , 2002 . 30 7 -16 . DOI:10.1016/S0141-8130(01)00187-8http://doi.org/10.1016/S0141-8130(01)00187-8 .
Zhang, R.; Edgar, K. J. . Properties, chemistry, and applications of the bioactive polysaccharide curdlan . Biomacromolecules , 2014 . 15 1079 -1096 . DOI:10.1021/bm500038ghttp://doi.org/10.1021/bm500038g .
Binks, B. P. . Particles as surfactants—similarities and differences . Current Opin. Colloid Interface Sci. , 2002 . 7 21 -41 . DOI:10.1016/S1359-0294(02)00008-0http://doi.org/10.1016/S1359-0294(02)00008-0 .
Wang, Z.; Cheng, Y.; Wang, H.; Yang, M.; Shao, Y.; Chen, X.; Tanaka, T. . Sandwiched epoxy–alumina composites with synergistically enhanced thermal conductivity and breakdown strength . J. Mater. Sci. , 2017 . 52 4299 -4308 . DOI:10.1007/s10853-016-0511-6http://doi.org/10.1007/s10853-016-0511-6 .
Cheng, J.; Liu, T.; Zhang, J.; Wang, B.; Ying, J.; Liu, F.; Zhang, X. . Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites . Appl. Phys. A , 2014 . 117 1985 -1992 . DOI:10.1007/s00339-014-8606-xhttp://doi.org/10.1007/s00339-014-8606-x .
Anithambigai, P.; Chakravarthii, M. D.; Mutharasu, D.; Huong, L.; Zahner, T.; Lacey, D.; Kamarulazizi, I. . Potential thermally conductive alumina filled epoxy composite for thermal management of high power LEDs . J. Mater. Sci.: Mater. Electron. , 2017 . 28 856 -867 . DOI:10.1007/s10854-016-5600-4http://doi.org/10.1007/s10854-016-5600-4 .
Ouyang, Y.; Hou, G.; Bai, L.; Li, B.; Yuan, F. . Constructing continuous networks by branched alumina for enhanced thermal conductivity of polymer composites . Compos. Sci. Technol. , 2018 . 165 307 -313 . DOI:10.1016/j.compscitech.2018.07.019http://doi.org/10.1016/j.compscitech.2018.07.019 .
Zhou, W. . Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites . J. Mater. Sci. , 2011 . 46 3883 -3889 . DOI:10.1007/s10853-011-5309-yhttp://doi.org/10.1007/s10853-011-5309-y .
Wen, B.; Ma, L.; Zou, W.; Zheng, X. . Enhanced thermal conductivity of poly(lactic acid)/alumina composite by synergistic effect of tuning crystallization of poly(lactic acid) crystallization and filler content . J. Mater. Sci.: Mater. Electron. , 2020 . 31 6328 -6338 . DOI:10.1007/s10854-020-03189-xhttp://doi.org/10.1007/s10854-020-03189-x .
Wang, Z.; Yang, M.; Cheng, Y.; Liu, J.; Xiao, B.; Chen, S.; Huang, J.; Xie, Q.; Wu, G.; Wu, H. . Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine . Compos. Part A: Appl. Sci. Manufact. , 2019 . 118 302 -311 . DOI:10.1016/j.compositesa.2018.12.022http://doi.org/10.1016/j.compositesa.2018.12.022 .
Agari, Y.; Uno, T. . Estimation on thermal conductivities of filled polymers . J. Appl. Polym. Sci. , 1986 . 32 5705 -5712 . DOI:10.1002/app.1986.070320702http://doi.org/10.1002/app.1986.070320702 .
Wong, C.; Bollampally, R. S. . Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging . J. Appl. Polym. Sci. , 1999 . 74 3396 -3403 . DOI:10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3http://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3 .
Sim, L. C.; Ramanan, S.; Ismail, H.; Seetharamu, K.; Goh, T. . Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes . Thermochimica Acta , 2005 . 430 155 -165 . DOI:10.1016/j.tca.2004.12.024http://doi.org/10.1016/j.tca.2004.12.024 .
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构