1.Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, China
weizhang@suda.edu.cn
Scan for full text
Guang-Xing Song, Teng-Fei Miao, Xiao-Xiao Cheng, 等. Construction of Chiroptical Switch on Silica Nanoparticle Surface
Guang-Xing Song, Teng-Fei Miao, Xiao-Xiao Cheng, et al. Construction of Chiroptical Switch on Silica Nanoparticle Surface
Guang-Xing Song, Teng-Fei Miao, Xiao-Xiao Cheng, 等. Construction of Chiroptical Switch on Silica Nanoparticle Surface
Guang-Xing Song, Teng-Fei Miao, Xiao-Xiao Cheng, et al. Construction of Chiroptical Switch on Silica Nanoparticle Surface
In this contribution, we utilized surface-initiated atom transfer radical polymerization (SI-ATRP) to prepare organic-inorganic hybrid core/shell silica nanoparticles (NPs), where silica particles acted as cores and polymeric shells (PAzoMA*) were attached to silica particles ,via, covalent bond. Subsequently, chiroptical switch was successfully constructed on silica NPs surface taking advantage of supramolecular chiral self-assembly of the grafted side-chain Azo-containing polymer (PAzoMA*). We found that the supramolecular chirality was highly dependent on the molecular weight of grafted PAzoMA*. Meanwhile, the supramolecular chirality could be regulated using 365 nm UV light irradiation and heating-cooling treatment, and a reversible supramolecular chiroptical switch could be repeated for over five cycles on silica NPs surface. Moreover, when heated above the glass transition temperature (,T,g,) of PAzoMA*, the organic-inorganic hybrid nanoparticles (SiO,2,@PAzoMA* NPs) still exhibited intense DRCD signals. Interestingly, the supramolecular chirality could be retained in solid film for more than 3 months. To conclude, we have prepared an organic-inorganic hybrid core/shell chiral silica nanomaterial with dynamic reversible chirality, thermal stability and chiral storage functions, providing potential applications in dynamic asymmetric catalysis, chiral separation and so on.
Silica nanoparticlesChiroptical switchSupramolecular chiral assemblyAzo-containing polymer
Mokashi-Punekar, S.; Zhou, Y.; Brooks, S. C.; Rosi, N. L. . Construction of chiral, helical nanoparticle superstructures: progress and prospects . Adv. Mater. , 2019 . 32 1905975 DOI:10.1002/adma.201905975http://doi.org/10.1002/adma.201905975 .
Cheng, G.; Xu, D.; Lu, Z.; Liu, K. . Chiral self-assembly of nanoparticles induced by polymers synthesized via reversible addition-fragmentation chain transfer polymerization . ACS Nano , 2019 . 13 1479 -1489 . DOI:10.1021/acsnano.8b07151http://doi.org/10.1021/acsnano.8b07151 .
Wang, R.; Cui, J. X.; Wan, X. H.; Zhang, J. . Controlled chiral arrangement of silver nanoparticles in supramolecular gels modulated by the cooling rate . Chem. Commun. , 2019 . 55 4949 -4952 . DOI:10.1039/C9CC01015Ghttp://doi.org/10.1039/C9CC01015G .
Gallagher, S. A.; Moloney, M. P.; Wojdyla, M.; Quinn, S. J.; Kelly, J. M.; Gun'ko, Y. K. . Synthesis and spectroscopic studies of chiral CdSe quantum dots . J. Mater. Chem. , 2010 . 20 8350 -8355 . DOI:10.1039/c0jm01185ahttp://doi.org/10.1039/c0jm01185a .
Jiang, J.; Wang, T.; Liu, M. H. . Creating chirality in the inner walls of silica nanotubes through a hydrogel template: chiral transcription and chiroptical switch . Chem. Commun. , 2010 . 46 7178 -7180 . DOI:10.1039/c0cc00891ehttp://doi.org/10.1039/c0cc00891e .
Matsukizono, H.; Jin, R. H. . High-temperature-resistant chiral silica generated on chiral crystalline templates at neutral pH and ambient conditions . Angew. Chem. Int. Ed. , 2012 . 124 5964 -5967 . DOI:10.1002/ange.201108914http://doi.org/10.1002/ange.201108914 .
Okazaki, Y.; Cheng, J. J.; Dedovets, D.; Kemper, G.; Delville, M. H.; Durrieu, M. C.; Ihara, H.; Takafuji, M.; Pouget, E.; Oda, R. . Chiral colloids: homogeneous suspension of individualized SiO2 helical and twisted nanoribbons . ACS Nano , 2014 . 8 6863 -6872 . DOI:10.1021/nn501560whttp://doi.org/10.1021/nn501560w .
Ma, H.; Yuan, R.; Wang, J.; Shi, Y.; Xu, J.; Chen, K.; Yu, L. . Cylindrical line-feeding growth of free-standing silicon nanohelices as elastic springs and resonators . Nano Lett. , 2020 . 20 5072 -5080 . DOI:10.1021/acs.nanolett.0c01265http://doi.org/10.1021/acs.nanolett.0c01265 .
Chen, B.; Deng, J. P.; Yang, W. T. . Hollow two-layered chiral nanoparticles consisting of optically active helical polymer/silica: preparation and application for enantioselective crystallization . Adv. Funct. Mater. , 2011 . 21 2345 -2350 . DOI:10.1002/adfm.201100113http://doi.org/10.1002/adfm.201100113 .
Kumano, D.; Iwahana, S.; Iida, H.; Shen, C.; Crassous, J.; Yashima, E. . Enantioseparation on Riboflavin derivatives chemically bonded to silica gel as chiral stationary phases for HPLC . Chirality , 2015 . 27 507 -517 . DOI:10.1002/chir.22452http://doi.org/10.1002/chir.22452 .
Choi, H. J.; Hyun, M. H. . Separation of enantiomers with magnetic silica nanoparticles modified by a chiral selector: enantioselective fishing . Chem. Commun. , 2009 . 6454 -6456 . DOI:10.1039/B908349Ahttp://doi.org/10.1039/B908349A .
Tamura, K.; Miyabe, T.; Iida, H.; Yashima, E. . Separation of enantiomers on diastereomeric right- and left-handed helical poly(phenyl isocyanide)s bearing L-alanine pendants immobilized on silica gel by HPLC . Polym. Chem. , 2011 . 2 91 -98 . DOI:10.1039/C0PY00164Chttp://doi.org/10.1039/C0PY00164C .
Wei, Y.; Tian, A.; Li, Y.; Wang, X.; Cao, B. . A general chiral selector immobilized on silica magnetic microspheres for direct separation of racemates . J. Mater. Chem. , 2012 . 22 8499 -8504 . DOI:10.1039/c2jm30372hhttp://doi.org/10.1039/c2jm30372h .
Wu, J.; Su, P.; Yang, Y.; Huang, J.; Wang, Y.; Yang, Y. . Immobilization of HSA on polyamidoamine-dendronized magnetic microspheres for application in direct chiral separation of racemates . J. Mater. Chem. B , 2014 . 2 775 -782 . DOI:10.1039/C3TB21340Dhttp://doi.org/10.1039/C3TB21340D .
Tarhan, T.; Tural, B.; Tural, S.; Topal, G. . Enantioseparation of mandelic acid enantiomers with magnetic nano-sorbent modified by a chiral selector . Chirality , 2015 . 27 835 -842 . DOI:10.1002/chir.22524http://doi.org/10.1002/chir.22524 .
Mallakpour, S.; Marefatpour, F. . Novel chiral poly(amide-imide)/surface modified SiO2 nanocomposites based on N-trimellitylimido-L-methionine: synthesis and a morphological study . Prog. Org. Coat. , 2014 . 77 1271 -1276 . DOI:10.1016/j.porgcoat.2014.03.024http://doi.org/10.1016/j.porgcoat.2014.03.024 .
Chen, W.; Duan, R.; Fan, Q. C.; Bai, Z. W.; Huang, S. H. . Preparation and enantioseparation property of chiral stationary phases based on cellulose tris(3,5-dimethylbenzoate)—a new way to prepare polysaccharide-coating type chiral stationary phases . Chinese J. Polym. Sci. , 2014 . 32 458 -466 . DOI:10.1007/s10118-014-1409-xhttp://doi.org/10.1007/s10118-014-1409-x .
Chen, W. W.; Ding, M. C.; Zhang, M.; Zhang, J. M.; Gao, X.; He, J. S.; Zhang, J. . Chiral separation abilities of homogeneously synthesized cellulose 3,5-dimethylphenylcarbamates: influences of degree of substitution and molecular weight . Chinese J. Polym. Sci. , 2015 . 33 1633 -1639 . DOI:10.1007/s10118-015-1695-yhttp://doi.org/10.1007/s10118-015-1695-y .
Zoppe, J. O.; Ataman, N. C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H. A. . Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes . Chem. Rev. , 2017 . 117 1105 -1318 . DOI:10.1021/acs.chemrev.6b00314http://doi.org/10.1021/acs.chemrev.6b00314 .
Mocny, P.; Klok, H. A. . Complex polymer topologies and polymer-nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization . Prog. Polym. Sci. , 2020 . 100 101185 DOI:10.1016/j.progpolymsci.2019.101185http://doi.org/10.1016/j.progpolymsci.2019.101185 .
Zhao, B.; Lin, J. F.; Deng, J. P.; Liu, D. . Seed-surface grafting precipitation polymerization for preparing microsized optically active helical polymer core/shell particles and their application in enantioselective crystallization . Macromol. Rapid Commun. , 2018 . 39 1800072 DOI:10.1002/marc.201800072http://doi.org/10.1002/marc.201800072 .
Chen, H. Y.; Zhou, J. Y.; Deng, J. P. . Helical polymer/Fe3O4 NPs constructing optically active, magnetic core/shell microspheres: preparation by emulsion polymerization and recycling application in enantioselective crystallization . Polym. Chem. , 2016 . 7 125 -134 . DOI:10.1039/C5PY01549Ahttp://doi.org/10.1039/C5PY01549A .
Zhang, H. Y.; Qian, G. Y.; Song, J. X.; Deng, J. P. . Optically active, magnetic microparticles: constructed by chiral helical substituted polyacetylene/Fe3O4 nanoparticles and recycled for uses in enantioselective crystallization . Ind. Eng. Chem. Res. , 2014 . 53 17394 -17402 . DOI:10.1021/ie503114zhttp://doi.org/10.1021/ie503114z .
He, W.; Cheng, L.; Zhang, L.; Liu, Z.; Cheng, Z.; Zhu, X. . Facile fabrication of biocompatible and tunable multifunctional nanomaterials via iron-mediated atom transfer radical polymerization with activators generated by electron transfer . ACS Appl. Mater. Interfaces , 2013 . 5 9663 -9669 . DOI:10.1021/am402696phttp://doi.org/10.1021/am402696p .
Wu, L.; Glebe, U.; Böker, A. . Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles . Polym. Chem. , 2015 . 6 5143 -5184 . DOI:10.1039/C5PY00525Fhttp://doi.org/10.1039/C5PY00525F .
Yang, D.; Feng, C.; Hu, J. . Nitroxide radical coupling reaction: a powerful tool in polymer and material synthesis . Polym. Chem. , 2013 . 4 2384 -2394 . DOI:10.1039/c2py20987jhttp://doi.org/10.1039/c2py20987j .
Li, Q.; Zhang, L.; Bai, L.; Zhang, Z.; Zhu, J.; Zhou, N.; Cheng, Z.; Zhu, X. . Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization . Soft Matter , 2011 . 7 6958 -6966 . DOI:10.1039/c1sm05211jhttp://doi.org/10.1039/c1sm05211j .
Wang, D. R.; Ye, G.; Wang, X. L.; Wang, X. G. . Graphene functionalized with Azo polymer brushes: surface-initiated polymerization and photoresponsive properties . Adv. Mater. , 2011 . 23 1122 -1125 . DOI:10.1002/adma.201003653http://doi.org/10.1002/adma.201003653 .
Zhang, N.; Samanta, S. R.; Rosen, B. M.; Percec, V. . Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis . Chem. Rev. , 2014 . 114 5848 -5958 . DOI:10.1021/cr400689shttp://doi.org/10.1021/cr400689s .
Hui, C. M.; Pietrasik, J.; Schmitt, M.; Mahoney, C.; Choi, J.; Bockstaller, M. R.; Matyjaszewski, K. . Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials . Chem. Mater. , 2013 . 26 745 -762 . DOI:10.1021/cm4023634http://doi.org/10.1021/cm4023634 .
Banerjee, S.; Paira, T. K.; Mandal, T. K. . Surface confined atom transfer radical polymerization: access to custom library of polymer-based hybrid materials for speciality applications . Polym. Chem. , 2014 . 5 4153 -4167 . DOI:10.1039/c4py00007bhttp://doi.org/10.1039/c4py00007b .
Matyjaszewski, K. . Atom transfer radical polymerization (atrp): current status and future perspectives . Macromolecules , 2012 . 45 4015 -4039 . DOI:10.1021/ma3001719http://doi.org/10.1021/ma3001719 .
Matyjaszewski, K.; Tsarevsky, N. V. . Macromolecular engineering by atom transfer radical polymerization . J. Am. Chem. Soc. , 2014 . 136 6513 -6533 . DOI:10.1021/ja408069vhttp://doi.org/10.1021/ja408069v .
Liu, M. H.; Zhang, L.; Wang, T. Y. . Supramolecular chirality in self-assembled systems . Chem. Rev. , 2015 . 115 7304 -7397 . DOI:10.1021/cr500671phttp://doi.org/10.1021/cr500671p .
Zhang, L.; Wang, H. X.; Li, S.; Liu, M. . Supramolecular chiroptical switches . Chem. Soc. Rev. , 2020 . 49 9095 -9120 . DOI:10.1039/D0CS00191Khttp://doi.org/10.1039/D0CS00191K .
Cheng, X. X.; Miao, T. F.; Qian, Y. L.; Zhang, Z. B.; Zhang, W.; Zhu, X. L. . Supramolecular chirality in azobenzene-containing polymer system: traditional postpolymerization self-assembly versus in situ supramolecular self-assembly strategy . Int. J. Mol. Sci. , 2020 . 21 6186 DOI:10.3390/ijms21176186http://doi.org/10.3390/ijms21176186 .
Wang, H.; Bisoyi, H. K.; Urbas, A. M.; Bunning, T. J.; Li, Q. . Reversible circularly polarized reflection in a self-organized helical superstructure enabled by a visible-light-driven axially chiral molecular switch . J. Am. Chem. Soc. , 2019 . 141 8078 -8082. .
Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. . Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium . J. Am. Chem. Soc. , 2017 . 139 13218 -13226 . DOI:10.1021/jacs.7b07626http://doi.org/10.1021/jacs.7b07626 .
Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. . Helical polymers: synthesis, structures, and functions . Chem. Rev. , 2009 . 109 6102 -6211 . DOI:10.1021/cr900162qhttp://doi.org/10.1021/cr900162q .
Cheng, X. X.; Miao, T. F.; Yin, L.; Zhang, W.; Zhu, X. L. . Construction of supramolecular chirality in polymer systems: chiral induction, transfer and application . Chinese J. Polym. Sci. , 2021 . 39 1357 -1375 . DOI:10.1007/s10118-021-2561-8http://doi.org/10.1007/s10118-021-2561-8 .
Deng, W.; Albouy, P. A.; Lacaze, E.; Keller, P.; Wang, X. G.; Li, M. H. . Azobenzene-containing liquid crystal triblock copolymers: synthesis, characterization, and self-assembly behavior . Macromolecules , 2008 . 41 2459 -2466 . DOI:10.1021/ma702590jhttp://doi.org/10.1021/ma702590j .
Tejedor, R. M.; Serrano, J.-L.; Oriol, L. . Photocontrol of supramolecular architecture in azopolymers: achiral and chiral aggregation . Eur. Polym. J. , 2009 . 45 2564 -2571 . DOI:10.1016/j.eurpolymj.2009.05.010http://doi.org/10.1016/j.eurpolymj.2009.05.010 .
Duan, P.; Li, Y.; Li, L.; Deng, J.; Liu, M. . Multiresponsive chiroptical switch of an azobenzene-containing lipid: solvent, temperature, and photoregulated supramolecular chirality . J. Phys. Chem. B , 2011 . 115 3322 -3329 . DOI:10.1021/jp110636bhttp://doi.org/10.1021/jp110636b .
Yin, L.; Zhao, Y.; Jiang, S. Q.; Wang, L. B.; Zhang, Z. B.; Zhu, J.; Zhang, W.; Zhu, X. L. . Preferential chiral solvation induced supramolecular chirality in optically inactive star Azo polymers: photocontrollability, chiral amplification and topological effects . Polym. Chem. , 2015 . 6 7045 -7052 . DOI:10.1039/C5PY01175Bhttp://doi.org/10.1039/C5PY01175B .
Lu, J. J.; Jiang, G. Q.; Zhang, Z. B.; Zhang, W.; Yang, Y. G.; Wang, Y.; Zhou, N. C.; Zhu, X. L. . A cyclic azobenzenophane-based smart polymer for chiroptical switches . Polym. Chem. , 2015 . 6 8144 -8149 . DOI:10.1039/C5PY01301Ahttp://doi.org/10.1039/C5PY01301A .
Yin, L.; Liu, M.; Zhao, Y.; Zhang, S. S.; Zhang, W.; Zhang, Z. B.; Zhu, X. L. . Supramolecular chirality induced by chiral solvation in achiral cyclic Azo-containing polymers: topological effects on chiral aggregation . Polym. Chem. , 2018 . 9 769 -776 . DOI:10.1039/C7PY02002Chttp://doi.org/10.1039/C7PY02002C .
Cheng, X. X.; Miao, T. F.; Yin, L.; Ji, Y. J.; Li, Y. Y.; Zhang, Z. B.; Zhang, W.; Zhu, X. L. . In situ controlled construction of a hierarchical supramolecular chiral liquid-crystalline polymer assembly . Angew. Chem. Int. Ed. , 2020 . 59 9669 -9677 . DOI:10.1002/anie.202001657http://doi.org/10.1002/anie.202001657 .
Benetti, E. M.; Sui, X.; Zapotoczny, S.; Vancso, G. J. . Surface-grafted gel-brush/metal nanoparticle hybrids . Adv. Funct. Mater. , 2010 . 20 939 -944 . DOI:10.1002/adfm.200902114http://doi.org/10.1002/adfm.200902114 .
Barrio, J.; Tejedor, R. M.; Chinelatto, L. S.; Sánchez, C.; Piñol, M.; Oriol, L. . Bistable mesomorphism and supramolecular stereomutation in chiral liquid crystal azopolymers . J. Mater. Chem. , 2009 . 19 4922 -4930 . DOI:10.1039/b901384ahttp://doi.org/10.1039/b901384a .
Li, Q.; Zhang, L.; Zhang, Z.; Zhou, N.; Cheng, Z.; Zhu, X. . Air-tolerantly surface-initiated AGET ATRP mediated by iron catalyst from silica nanoparticles . J. Polym. Sci. Part A: Polym. Chem. , 2010 . 48 2006 -2015 . DOI:10.1002/pola.23968http://doi.org/10.1002/pola.23968 .
Stöber, W.; Fink, A.; Bohn, E. . Controlled growth of monodisperse silica spheres in the micron size range . J. Colloid Interface Sci. , 1968 . 26 62 -69 . DOI:10.1016/0021-9797(68)90272-5http://doi.org/10.1016/0021-9797(68)90272-5 .
Khabibullin, A.; Mastan, E.; Matyjaszewski, K.; Zhu, S. . Surface-initiated atom transfer radical polymerization . Adv. Polym. Sci. , 2015 . 270 29 -76. .
Mastan, E.; Xi, L.; Zhu, S. . What limits the chain growth from flat surfaces in surface-initiated ATRP: propagation, termination or both? . Macromol. Theor. Simul. , 2015 . 24 89 -99 . DOI:10.1002/mats.201400085http://doi.org/10.1002/mats.201400085 .
Bombalski, L.; Min, K.; Dong, H. C.; Tang, C. B.; Matyjaszewski, K. . Preparation of well-defined hybrid materials by ATRP in miniemulsion . Macromolecules , 2007 . 40 7429 -4732 . DOI:10.1021/ma071408khttp://doi.org/10.1021/ma071408k .
Pyun, J.; Jia, S.; Kowalewski, T.; Patterson, G. D.; Matyjaszewski, K. . Synthesis and characterization of organic/inorganic hybrid nanoparticles: kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films . Macromolecules , 2003 . 36 5094 -5104 . DOI:10.1021/ma034188thttp://doi.org/10.1021/ma034188t .
Wang, D. R.; Wang, X. G. . Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties . Prog. Polym. Sci. , 2013 . 38 271 -301 . DOI:10.1016/j.progpolymsci.2012.07.003http://doi.org/10.1016/j.progpolymsci.2012.07.003 .
Deng, W.; Brulet, A.; Albouy, P. A.; Keller, P.; Wang, X. G.; Li, M. H. . Morphology study of a series of azobenzene-containing side-on liquid crystalline triblock copolymers . Chinese J. Polym. Sci. , 2012 . 30 258 -268 . DOI:10.1007/s10118-012-1117-3http://doi.org/10.1007/s10118-012-1117-3 .
Yu, H. T.; Tang, J. W.; Feng, Y. Y.; Feng, W. . Structural design and application of azo-based supramolecular polymer systems . Chinese J. Polym. Sci. , 2019 . 37 1183 -1199 . DOI:10.1007/s10118-019-2331-zhttp://doi.org/10.1007/s10118-019-2331-z .
Tejedor, R. M.; Oriol, L.; Serrano, J. L.; Urena, F. P.; Gonzalez, J. J. L. . Photoinduced chiral nematic organization in an achiral glassy nematic azopolymer . Adv. Funct. Mater. , 2007 . 17 3486 -3492 . DOI:10.1002/adfm.200700202http://doi.org/10.1002/adfm.200700202 .
Jiang, S. Q.; Zhao, Y.; Wang, L. B.; Yin, L.; Zhang, Z. B.; Zhu, J.; Zhang, W.; Zhu, X. L. . Photocontrollable induction of supramolecular chirality in achiral side chain Azo-containing polymers through preferential chiral solvation . Polym. Chem. , 2015 . 6 4230 -4239 . DOI:10.1039/C5PY00496Ahttp://doi.org/10.1039/C5PY00496A .
Huang, S.; Chen, Y.; Ma, S.; Yu, H. . Hierarchical self-assembly in liquid-crystalline block copolymers enabled by chirality transfer . Angew. Chem. Int. Ed. , 2018 . 57 12524 -12528 . DOI:10.1002/anie.201807379http://doi.org/10.1002/anie.201807379 .
Miao, T. F.; Yin, L.; Cheng, X. X.; Zhao, Y.; Hou, W. J.; Zhang, W.; Zhu, X. L. . Chirality construction from preferred π-π stacks of achiral azobenzene units in polymer: chiral induction, transfer and memory . Polymers , 2018 . 10 612 DOI:10.3390/polym10060612http://doi.org/10.3390/polym10060612 .
Zhao, Y.; Rahirn, N. A. A.; Xia, Y. J.; Fujiki, M.; Song, B.; Zhang, Z. B.; Zhang, W.; Zhu, X. L. . Supramolecular chirality in achiral polyfluorene: chiral gelation, memory of chirality, and chiral sensing property . Macromolecules , 2016 . 49 3214 -3221 . DOI:10.1021/acs.macromol.6b00376http://doi.org/10.1021/acs.macromol.6b00376 .
0
浏览量
6
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构