a.State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230000, China
b.Suzhou Advanced Research Institute, University of Science and Technology of China, Suzhou 215000, China
hwz1988@ustc.edu.cn (W.Z.H)
yuanhu@ustc.edu.cn (Y.H.)
Scan for full text
Wei Cai, Bi-Bo Wang, Xin Wang, 等. Recent Progress in Two-dimensional Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano)composites[J]. Chinese Journal of Polymer Science, 2021,39(8):935-956.
Wei Cai, Bi-Bo Wang, Xin Wang, et al. Recent Progress in Two-dimensional Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano)composites[J]. Chinese Journal of Polymer Science, 2021,39(8):935-956.
Wei Cai, Bi-Bo Wang, Xin Wang, 等. Recent Progress in Two-dimensional Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano)composites[J]. Chinese Journal of Polymer Science, 2021,39(8):935-956. DOI: 10.1007/s10118-021-2575-2.
Wei Cai, Bi-Bo Wang, Xin Wang, et al. Recent Progress in Two-dimensional Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano)composites[J]. Chinese Journal of Polymer Science, 2021,39(8):935-956. DOI: 10.1007/s10118-021-2575-2.
The high fire safety of polymer nanocomposites is being pursued by research institutions around the world. In addition to intrinsic flame retardancy strategy, the additive-type flame retardants have attracted increasing attention due to low commercial cost and easy fabrication craft. However, traditional additive-type flame retardants usually need high addition amount to achieve a desirable effect, which causes many side-effects on the overall performance of polymer materials, such as deteriorated mechanical property and processability. At present, two-dimensional (2D) nanomaterials have also been applied to reduce the fire hazards of polymer (nano)composites with the coupling of barrier function and catalysis as well as carbonization effect. Even though most research work mainly focus on graphene-based flame retardants, more emerging two-dimensional nanomaterials are taking away research attention, due to their complementary and unique properties, mainly including hexagonal boron nitride (h-BN), molybdenum disulfide (MoS,2,), metal organic frameworks (MOF), carbon nitride (CN), titanium carbide (MXene) and black phosphorene (BP). In this review, except for graphene, the flame retardant mechanism involving different layered nanomaterials are also reviewed. Meanwhile, the functionalization method and flame retardancy effect of different layered nanomaterials are emphatically discussed for offering an effective reference to solve the fire hazards of polymer materials. Moreover, this work objectively evaluates the practical significance of polymer/layered nanomaterials composites for industrial application.
Polymer (nano)compositesLayered nanomaterialsFire safetyFlame retardant mechanism
Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. . Recent advances in graphene based polymer composites . Prog. Polym Sci. , 2010 . 31 1350 -1375. .
Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. . Toward flexible polymer and paper-based energy storage devices . Adv. Mater. , 2011 . 23 3751 -3769. .
Gao, Y.; Wu, J.; Wang, Q.; Wilkie, C. A.; O'Hare, D. . Flame retardant polymer/layered double hydroxide nanocomposites . J. Mater. Chem. A , 2014 . 2 10996 -11016 . DOI:10.1039/c4ta01030bhttp://doi.org/10.1039/c4ta01030b .
Higginbotham, A. L.; Lomeda, J. R.; Morgan, A. B.; Tour, J. M. . Graphite oxide flame-retardant polymer nanocomposites . ACS Appl. Mater. Interfaces , 2009 . 1 2256 -2261 . DOI:10.1021/am900419mhttp://doi.org/10.1021/am900419m .
Song, P.; Wang, C.; Chen, L.; Zheng, Y.; Liu, L.; Wu, Q.; Huang, G.; Yu, Y.; Wang, H. . Thermally stable, conductive and flame-retardant nylon 612 composites created by adding two-dimensional alumina platelets . Compos. Part A-Appl. S. , 2017 . 97 100 -110 . DOI:10.1016/j.compositesa.2017.02.029http://doi.org/10.1016/j.compositesa.2017.02.029 .
Dasari, A.; Yu, Z. Z.; Cai, G. P.; Mai, Y. W. . Recent developments in the fire retardancy of polymeric materials . Prog. Polym. Sci. , 2013 . 38 1357 -1387 . DOI:10.1016/j.progpolymsci.2013.06.006http://doi.org/10.1016/j.progpolymsci.2013.06.006 .
Wang, X.; Kalali, E. N.; Wan, J. T.; Wang, D. Y. . Carbon-family materials for flame retardant polymeric materials . Prog. Polym. Sci. , 2017 . 69 22 -46 . DOI:10.1016/j.progpolymsci.2017.02.001http://doi.org/10.1016/j.progpolymsci.2017.02.001 .
Guo, C.; Zhou, L.; Lv, J. . Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites . Polym. Polym. Compos. , 2013 . 21 449 -456. .
Yen, Y. Y.; Wang, H. T.; Guo, W. J. . Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites . Polym. Degrad. Stabil. , 2012 . 97 863 -869 . DOI:10.1016/j.polymdegradstab.2012.03.043http://doi.org/10.1016/j.polymdegradstab.2012.03.043 .
Braun, U; Schartel, B. . Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene . Macromol. Chem. Phys. , 2004 . 205 2185 -2196 . DOI:10.1002/macp.200400255http://doi.org/10.1002/macp.200400255 .
Thirumal, M.; Khastgir, D.; Nando, G.; Naik, Y.; Singha, N. K. . Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties . Polym. Degrad. Stabil. , 2010 . 95 1138 -1145 . DOI:10.1016/j.polymdegradstab.2010.01.035http://doi.org/10.1016/j.polymdegradstab.2010.01.035 .
Hong, N.; Zhan, J.; Wang, X.; Stec, A. A.; Hull, T. R.; Ge, H.; Xing, W.; Song, L.; Hu, Y. . Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile-Butadiene-Styrene copolymer composite . Compos. Part A: Appl. S. , 2014 . 64 203 -210 . DOI:10.1016/j.compositesa.2014.04.015http://doi.org/10.1016/j.compositesa.2014.04.015 .
Liu, J.; Peng, S.; Zhang, Y.; Chang, H.; Yu, Z.; Pan, B.; Lu, C.; Ma, J.; Niu, Q. . Influence of microencapsulated red phosphorus on the flame retardancy of high impact polystyrene/magnesium hydroxide composite and its mode of action . Polym. Degrad. Stabil. , 2015 . 121 208 -221 . DOI:10.1016/j.polymdegradstab.2015.09.011http://doi.org/10.1016/j.polymdegradstab.2015.09.011 .
Becker, C. M.; Gabbardo, A. D.; Wypych, F.; Amico, S. C. . Mechanical and flame-retardant properties of epoxy/Mg-Al LDH composites . Compos Part A: Appl. S. , 2011 . 42 196 -202 . DOI:10.1016/j.compositesa.2010.11.005http://doi.org/10.1016/j.compositesa.2010.11.005 .
Zhong, Y.; Zhang, L.; Fischer, A.; Wang, L.; Drummer, D.; Wu, W. . The effect of hBN on the flame retardancy and thermal stability of PN flame retardant PA6 . J. Macromol. Sci. A , 2018 . 55 17 -23 . DOI:10.1080/10601325.2017.1387484http://doi.org/10.1080/10601325.2017.1387484 .
Wang, X; Xing, W; Feng, X; Song, L; Hu, Y. . MoS2/polymer nanocomposites: preparation, properties, and applications . Polym. Rev. , 2017 . 57 440 -466 . DOI:10.1080/15583724.2017.1309662http://doi.org/10.1080/15583724.2017.1309662 .
Wang, X.; Xing, W.; Feng, X.; Yu, B.; Song, L.; Hu, Y. . Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism . Polym. Chem. , 2014 . 5 1145 -1154 . DOI:10.1039/C3PY00963Ghttp://doi.org/10.1039/C3PY00963G .
He, W; Song, P; Yu, B; Fang, Z; Wang, H. . Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants . Prog Mater Sci. , 2020 . 114 100687 DOI:10.1016/j.pmatsci.2020.100687http://doi.org/10.1016/j.pmatsci.2020.100687 .
Zhang, X. J; Wang, G. S; Wei, Y. Z; Guo, L.; Cao, M. S. . Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride . J. Mater. Chem. A , 2013 . 1 12115 -12122 . DOI:10.1039/c3ta12451ghttp://doi.org/10.1039/c3ta12451g .
Shen, J. H.; Li, M. M.; Chu, L. F.; Guo, C. X.; Guo, Y. J.; Guo, Y. P. . Effect mechanism of copper ions on photocatalytic activity of TiO2/graphene oxide composites for phenol-4-sulfonic acid photodegradation . J. Colloid. Interf. Sci. , 2021 . 586 563 -575 . DOI:10.1016/j.jcis.2020.10.121http://doi.org/10.1016/j.jcis.2020.10.121 .
Compton, O. C.; Kim, S.; Pierre, C.; Torkelson, J. M.; Nguyen, S. T. . Crumpled graphene nanosheets as highly effective barrier property enhancers . Adv. Mater. , 2010 . 22 4759 -4763 . DOI:10.1002/adma.201000960http://doi.org/10.1002/adma.201000960 .
Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. . Au@ ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework . J. Am. Chem. Soc. , 2009 . 131 11302 -11303 . DOI:10.1021/ja9047653http://doi.org/10.1021/ja9047653 .
Zhou, X.; Qiu, S. L.; Cai, W.; Liu, L. X.; Hou, Y. B.; Wang, W.; Song, L.; Wang, X.; Hu, Y. . Construction of hierarchical MoS2@TiO2 structure for the high performance bimaleimide system with excellent fire safety and mechanical properties . Chem. Eng. J. , 2019 . 369 451 -462 . DOI:10.1016/j.cej.2019.02.181http://doi.org/10.1016/j.cej.2019.02.181 .
Zhao, M.; Huang, Y.; Peng, Y.; Huang, Z.; Ma, Q.; Zhang, H. . Two-dimensional metal-organic framework nanosheets: synthesis and applications . Chem. Soc. Rev. , 2018 . 47 6267 -6295 . DOI:10.1039/C8CS00268Ahttp://doi.org/10.1039/C8CS00268A .
Cai, W.; Cai, T.; He, L.; Chu, F.; Mu, X.; Han, L.; Hu, Y.; Wang, B.; Hu, W. . Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane . J. Hazard. Mater. , 2020 . 387 121971 DOI:10.1016/j.jhazmat.2019.121971http://doi.org/10.1016/j.jhazmat.2019.121971 .
Wang, Q. W.; Zhang, H. B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.; Yang, R.; Koratkar, N.; Yu, Z. Z. . Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances . Adv. Funct. Mater. , 2019 . 29 1806819 DOI:10.1002/adfm.201806819http://doi.org/10.1002/adfm.201806819 .
Li, Y.; Yang, Y.; Feng, Y.; Pu, J.; Hou, L. A. . Combined effects of Pseudomonas quinolone signal-based quorum quenching and graphene oxide on the mitigation of biofouling and improvement of the application potential for the thin-film composite membrane . Sci. Total Environ. , 2021 . 760 143348 DOI:10.1016/j.scitotenv.2020.143348http://doi.org/10.1016/j.scitotenv.2020.143348 .
Li, Z.; Lira, S. I. M.; Zhang, L.; Exposito, D. F.; Heeralal, V. B.; Wang, D. Y. . Bio-inspired engineering of boron nitride with iron-derived nanocatalyst toward enhanced fire retardancy of epoxy resin . Polym. Degrad. Stabil. , 2018 . 157 119 -130 . DOI:10.1016/j.polymdegradstab.2018.10.005http://doi.org/10.1016/j.polymdegradstab.2018.10.005 .
Gao, R.; Wang, S.; Zhou, K.; Qian, X. . Mussel-inspired decoration of Ni(OH)2 nanosheets on 2D MoS2 towards enhancing thermal and flame retardancy properties of poly(lactic acid) . Polym. Adv. Technol. , 2019 . 30 879 -888. .
Cai, W.; Hu, Y.; Pan, Y.; Zhou, X.; Chu, F.; Han, L.; Mu, X.; Zhuang, Z.; Wang, X.; Xing, W. . Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets: enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane . J. Colloid Interf. Sci. , 2020 . 561 32 -45 . DOI:10.1016/j.jcis.2019.11.114http://doi.org/10.1016/j.jcis.2019.11.114 .
Xu, W.; Wang, G.; Xu, J.; Liu, Y.; Chen, R.; Yan, H. . Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam . J. Hazard. Mater. , 2019 . 379 120819 DOI:10.1016/j.jhazmat.2019.120819http://doi.org/10.1016/j.jhazmat.2019.120819 .
Hou, Y; Liu, L; Qiu, S; Zhou, X; Gui, Z; Hu, Y. . DOPO-modified two-dimensional Co-based metal-organic framework: preparation and application for enhancing fire safety of poly(lactic acid) . ACS Appl. Mater. Interfaces , 2018 . 10 8274 -8286 . DOI:10.1021/acsami.7b19395http://doi.org/10.1021/acsami.7b19395 .
Wang, D; Zhou, K; Yang, W; Xing, W; Hu, Y; Gong, X. . Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins . Ind. Eng. Chem. Res. , 2013 . 52 17882 -17890 . DOI:10.1021/ie402441ghttp://doi.org/10.1021/ie402441g .
Cai, W.; Zhan, J.; Feng, X.; Yuan, B.; Liu, J.; Hu, W.; Hu, Y. . Facile construction of flame-retardant-wrapped molybdenum disulfide nanosheets for properties enhancement of thermoplastic polyurethane . Ind. Eng. Chem. Res. , 2017 . 56 7229 -7238 . DOI:10.1021/acs.iecr.7b01202http://doi.org/10.1021/acs.iecr.7b01202 .
Banares, M. A.; Fierro, J. L. G. . Methane-selective oxidation of silica-supported molybdenum(VI) catalysts-structure and catalytic performance . ACS Symposium Series , 1993 . 523 355 -367. .
Gaigneaux, E. M.; Genet, M. J.; Ruiz, P.; Delmon, B. . Catalytic behavior of molybdenum suboxides in the selective oxidation of isobutene to methacrolein . J. Phys. Chem. B , 2000 . 104 5724 -5737 . DOI:10.1021/jp9913416http://doi.org/10.1021/jp9913416 .
Fu, T.; Wang, Y.; Wernbacher, A.; Schloegl, R; Trunschke, A. . Single-site vanadyl species isolated within molybdenum oxide monolayers in propane oxidation . ACS Catal. , 2019 . 9 4875 -4886 . DOI:10.1021/acscatal.9b00326http://doi.org/10.1021/acscatal.9b00326 .
Burcham, L. J.; Briand, L. E.; Wachs, I. E. . Quantification of active sites for the determination of methanol oxidation turn-over frequencies using methanol chemisorption and in situ infrared techniques. 2. Bulk metal oxide catalysts . Langmuir , 2001 . 17 6175 -6184 . DOI:10.1021/la010010thttp://doi.org/10.1021/la010010t .
Zhu, G.; Qu, Z.; Zhuang, G.; Xie, Q; Meng, Q.; Wang, J. . CO oxidation by lattice oxygen on V2O5 nanotubes . J. Phys. Chem. C , 2011 . 115 14806 -14811 . DOI:10.1021/jp2026175http://doi.org/10.1021/jp2026175 .
Inomata, Y.; Albrecht, K.; Yamamoto, K. . Size-dependent oxidation state and CO oxidation activity of tin oxide clusters . ACS Catal. , 2018 . 8 451 -456 . DOI:10.1021/acscatal.7b02981http://doi.org/10.1021/acscatal.7b02981 .
Jin, W.; Yuan, L.; Liang, G.; Gu, A. . Multifunctional cyclotriphosphazene/hexagonal boron nitride hybrids and their flame retarding bismaleimide resins with high thermal conductivity and thermal stability . ACS Appl. Mater. Interfaces , 2014 . 6 14931 -14944 . DOI:10.1021/am502364khttp://doi.org/10.1021/am502364k .
Zhang, H. X.; Feng, P. X. . Controlling bandgap of rippled hexagonal boron nitride membranes via plasma treatment . ACS Appl. Mater. Interfaces , 2012 . 4 30 -33 . DOI:10.1021/am201435zhttp://doi.org/10.1021/am201435z .
Sun, Y.; Gao, M.; Chai, Z.; Wang, H. . Thermal behavior of the flexible polyvinyl chloride including montmorillonite modified with iron oxide as flame retardant . J. Therm. Anal. Calorim. , 2018 . 131 65 -70 . DOI:10.1007/s10973-017-6117-7http://doi.org/10.1007/s10973-017-6117-7 .
Ji, M.; Chen, L.; Que, J.; Zheng, L.; Chen, Z.; Wu, Z. . Effects of transition metal oxides on pyrolysis properties of PVC . Process Saf. Environ. , 2020 . 140 211 -220 . DOI:10.1016/j.psep.2020.04.010http://doi.org/10.1016/j.psep.2020.04.010 .
Miao, J.; Fang, Y.; Yang, X.; Zhu, Y.; Hu, A.; Wang, G. . Fabrication, flame retardancy and physical properties of phosphorus containing porous organic polymers/epoxy resin composites . Polym. Degrad. Stabil. , 2020 . 176 109159 DOI:10.1016/j.polymdegradstab.2020.109159http://doi.org/10.1016/j.polymdegradstab.2020.109159 .
Liu, J.; Guo, Y.; Chang, H.; Li, H.; Xu, A.; Pan, B. . Interaction between magnesium hydroxide and microencapsulated red phosphorus in flame-retarded high-impact polystyrene composite . Fire Mater. , 2018 . 42 958 -966 . DOI:10.1002/fam.2650http://doi.org/10.1002/fam.2650 .
Zou, B.; Qiu, S.; Ren, X.; Zhou, Y.; Zhou, F.; Xu, Z.; Zhao, Z.; Song, L.; Hu, Y.; Gong, X. . Combination of black phosphorus nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites . J. Hazard. Mater. , 2020 . 383 121069 DOI:10.1016/j.jhazmat.2019.121069http://doi.org/10.1016/j.jhazmat.2019.121069 .
Zhou, Y.; Huang, J.; Wang, J.; Chu, F.; Xu, Z.; Hu, W.; Hu, Y. . Rationally designed functionalized black phosphorus nanosheets as new fire hazard suppression material for polylactic acid . Polym. Degrad. Stabil. , 2020 . 178 109194 DOI:10.1016/j.polymdegradstab.2020.109194http://doi.org/10.1016/j.polymdegradstab.2020.109194 .
Wang, J.; Wu, Y.; Xue, Y.; Liu, D.; Wang, X.; Hu, X.; Bando, Y.; Li, W. . Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management . J. Mater. Chem. C , 2018 . 6 1363 -1369 . DOI:10.1039/C7TC04860Bhttp://doi.org/10.1039/C7TC04860B .
Cai, W.; Zhang, D.; Wang, B.; Shi, Y.; Pan, Y.; Wang, J.; Hu, W.; Hu, Y. . Scalable one-step synthesis of hydroxylated boron nitride nanosheets for obtaining multifunctional polyvinyl alcohol nanocomposite films: multi-azimuth properties improvement . Compos. Sci. Technol. , 2018 . 168 74 -80 . DOI:10.1016/j.compscitech.2018.09.004http://doi.org/10.1016/j.compscitech.2018.09.004 .
Qiu, X.; Li, Z.; Li, X.; Yu, L.; Zhang, Z. . Construction and flame-retardant performance of layer-by-layer assembled hexagonal boron nitride coatings on flexible polyurethane foams . J. Appl. Polym. Sci. , 2019 . 136 47839 DOI:10.1002/app.47839http://doi.org/10.1002/app.47839 .
Yang, H.; Yu, B.; Song, P.; Maluk, C.; Wang, H. . Surface-coating engineering for flame retardant flexible polyurethane foams: a critical review . Compos. Part B-Eng. , 2019 . 176 107185 DOI:10.1016/j.compositesb.2019.107185http://doi.org/10.1016/j.compositesb.2019.107185 .
Tian, C.; Yuan, L.; Liang, G.; Gu, A. . High thermal conductivity and flame-retardant phosphorus-free bismaleimide resin composites based on 3D porous boron nitride framework . J. Mater. Sci. , 2019 . 54 7651 -7664 . DOI:10.1007/s10853-019-03318-whttp://doi.org/10.1007/s10853-019-03318-w .
Zhang, Q.; Zhang, M.; Shi, H.; Li, Z.; Yu, L; Li, X.; Zhang, Z.; Wu, Z. . Enhancing flame retardance of epoxy resin by incorporation into ammonium polyphosphate/boron nitride nanosheets/zinc ferrite three-dimensional porous aerogel via vacuum-assisted infiltration . J. Appl. Polym. Sci. , 2020 . 137 48609 DOI:10.1002/app.48609http://doi.org/10.1002/app.48609 .
Zhi, Y. R.; Yu, B.; Yuen, A. C. Y.; Liang, J.; Wang, L. Q.; Yang, W.; Lu, H. D.; Yeoh, G. H. . Surface manipulation of thermal-exfoliated hexagonal boron nitride with polyaniline for improving thermal stability and fire safety performance of polymeric materials . ACS Omega , 2018 . 3 14942 -14952 . DOI:10.1021/acsomega.8b02316http://doi.org/10.1021/acsomega.8b02316 .
Wang, J.; Zhang, D.; Zhang, Y.; Cai, W.; Yao, C.; Hu, Y.; Hu, W. . Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane . J. Hazard. Mater. , 2019 . 362 482 -494 . DOI:10.1016/j.jhazmat.2018.09.009http://doi.org/10.1016/j.jhazmat.2018.09.009 .
Cai, W.; Hong, N.; Feng, X.; Zeng, W.; Shi, Y.; Zhang, Y.; Wang, B.; Hu, Y. . A facile strategy to simultaneously exfoliate and functionalize boron nitride nanosheets via Lewis acid-base interaction . Chem. Eng. J. , 2017 . 330 309 -321 . DOI:10.1016/j.cej.2017.07.162http://doi.org/10.1016/j.cej.2017.07.162 .
Qu, T.; Yang, N.; Hou, J.; Li, G.; Yao, Y.; Zhang, Q.; He, L.; Wu, D.; Qu, X. . Flame retarding epoxy composites with poly(phosphazene-co-bisphenol A)-coated boron nitride to improve thermal conductivity and thermal stability . RSC Adv. , 2017 . 7 6140 -6151. .
Zhang, Q.; Li, Z.; Li, X.; Yu, L.; Zhang, Z.; Wu, Z. . Zinc ferrite nanoparticle decorated boron nitride nanosheet: preparation, magnetic field arrangement, and flame retardancy . Chem. Eng. J. , 2019 . 356 680 -692 . DOI:10.1016/j.cej.2018.09.053http://doi.org/10.1016/j.cej.2018.09.053 .
Zhang, Q.; Li, Z.; Li, X.; Yu, L.; Wu, Z. . Boron nitride nanosheets decorated by bismuth ferrite particles: preparation, characterization, and effect on flame-retardant performance of epoxy resin . Mater. Res. Express , 2018 . 5 095019 DOI:10.1088/2053-1591/aad744http://doi.org/10.1088/2053-1591/aad744 .
Zhang, Q.; Li, Z.; Li, X.; Yu, L.; Zhang, Z.; Wu, Z. . Preparation of cobalt ferrite nanoparticle-decorated boron nitride nanosheet flame retardant and its flame retardancy in epoxy resin . Nano , 2019 . 14 1950063 DOI:10.1142/S1793292019500632http://doi.org/10.1142/S1793292019500632 .
Xu, W.; Li, A.; Liu, Y.; Chen, R.; Li, W. . CuMoO4@hexagonal boron nitride hybrid: an ecofriendly flame retardant for polyurethane elastomer . J. Mater. Sci. , 2018 . 53 11265 -11279 . DOI:10.1007/s10853-018-2390-5http://doi.org/10.1007/s10853-018-2390-5 .
Feng, Y.; Yuan, L.; Liang, G.; Gu, A. . Phosphorus-free boron nitride/cerium oxide hybrid: a synergistic flame retardant and smoke suppressant for thermally resistant cyanate ester resin . Polym. Adv. Technol. , 2019 . 30 2340 -2352 . DOI:10.1002/pat.4675http://doi.org/10.1002/pat.4675 .
Cai, W.; Guo, W.; Pan, Y.; Wang, J.; Mu, X.; Feng, X.; Yuan, B.; Wang, B.; Hu, Y. . Polydopamine-bridged synthesis of ternary h-BN@ PDA@SnO2 as nanoenhancers for flame retardant and smoke suppression of epoxy composites . Compos. Part A: Appl. S. , 2018 . 111 94 -105 . DOI:10.1016/j.compositesa.2018.05.015http://doi.org/10.1016/j.compositesa.2018.05.015 .
Cai, W.; Wang, B.; Liu, L.; Zhou, X.; Chu, F.; Zhan, J.; Hu, Y.; Kan, Y.; Wang, X. . An operable platform towards functionalization of chemically inert boron nitride nanosheets for flame retardancy and toxic gas suppression of thermoplastic polyurethane . Compos. Part B-Eng. , 2019 . 178 107462 DOI:10.1016/j.compositesb.2019.107462http://doi.org/10.1016/j.compositesb.2019.107462 .
Zhou, K.; Liu, J.; Shi, Y.; Jiang, S.; Wang, D.; Hu, Y.; Gui, Z. . MoS2 nano layers grown on carbon nanotubes: an advanced reinforcement for epoxy composites . ACS Appl. Mater. Interfaces , 2015 . 7 6070 -81 . DOI:10.1021/acsami.5b00762http://doi.org/10.1021/acsami.5b00762 .
Zhi, M.; Liu, Q.; Zhao, Y.; Gao, S.; Zhang, Z.; He, Y. . Novel MoS2-DOPO hybrid for effective enhancements on flame retardancy and smoke suppression of flexible polyurethane foams . ACS Omega , 2020 . 5 2734 -2746 . DOI:10.1021/acsomega.9b03346http://doi.org/10.1021/acsomega.9b03346 .
Wang, D.; Wen, P.; Wang, J.; Song, L.; Hu, Y. . The effect of defect-rich molybdenum disulfide nanosheets with phosphorus, nitrogen and silicon elements on mechanical, thermal, and fire behaviors of unsaturated polyester composites . Chem. Eng. J. , 2017 . 313 238 -249 . DOI:10.1016/j.cej.2016.12.045http://doi.org/10.1016/j.cej.2016.12.045 .
Feng, X.; Wang, B.; Wang, X.; Wen, P.; Cai, W.; Hu, Y.; Liew, K. M. . Molybdenum disulfide nanosheets as barrier enhancing nanofillers in thermal decomposition of polypropylene composites . Chem. Eng. J. , 2016 . 295 278 -287 . DOI:10.1016/j.cej.2016.03.059http://doi.org/10.1016/j.cej.2016.03.059 .
Zhou, K.; Jiang, S.; Shi, Y.; Liu, J.; Wang, B.; Hu, Y.; Gui, Z. . Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties . RSC Adv. , 2014 . 4 40170 -40180. .
Zhou, K.; Yang, W.; Tang, G.; Wang, B.; Jiang, S.; Hu, Y, Gui, Z. . Comparative study on the thermal stability, flame retardancy and smoke suppression properties of polystyrene composites containing molybdenum disulfide and graphene . RSC Adv. , 2013 . 3 25030 -25040. .
Zhou, K.; Tang, G.; Jiang, S.; Gui, Z.; Hu, Y. . Combination effect of MoS2 with aluminum hypophosphite in flame retardant ethylene-vinyl acetate composites . RSC Adv. , 2016 . 6 37672 -37680. .
Zhou, K.; Tang, G.; Gao, R.; Guo, H. . Constructing hierarchical polymer@MoS2 core-shell structures for regulating thermal and fire safety properties of polystyrene nanocomposites . Compos. Part A-Appl. S. , 2018 . 107 144 -154 . DOI:10.1016/j.compositesa.2017.12.026http://doi.org/10.1016/j.compositesa.2017.12.026 .
Pan, H.; Shen, Q.; Zhang, Z.; Yu, B.; Lu, Y. . MoS2-filled coating on flexible polyurethane foam via layer-by-layer assembly technique: flame-retardant and smoke suppression properties . J. Mater. Sci. , 2018 . 53 9340 -9349 . DOI:10.1007/s10853-018-2199-2http://doi.org/10.1007/s10853-018-2199-2 .
Yang, L.; Mukhopadhyay, A.; Jiao, Y.; Yong, Q.; Chen, L.; Xing, Y.; Hamel, J.; Zhu, H. . Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2 . Nanoscale , 2017 . 9 11452 -11462 . DOI:10.1039/C7NR02243Chttp://doi.org/10.1039/C7NR02243C .
Jiang, S. D.; Tang, G.; Bai, Z. M.; Wang, Y. Y.; Hu, Y.; Song, L. . Surface functionalization of MoS2 with POSS for enhancing thermal, flame-retardant and mechanical properties in PVA composites . RSC Adv. , 2014 . 4 3253 -3262. .
Zhou, K.; Gao, R.; Gui, Z.; Hu, Y. . The effective reinforcements of functionalized MoS2 nanosheets in polymer hybrid composites by sol-gel technique . Compos. Part A-Appl. S. , 2017 . 94 1 -9 . DOI:10.1016/j.compositesa.2016.12.010http://doi.org/10.1016/j.compositesa.2016.12.010 .
Wang, S.; Yu, B.; Zhou, K.; Yin, L.; Zhong, Y.; Ma, X. . A novel phosphorus-containing MoS2 hybrid: Towards improving the fire safety of epoxy resin . J. Colloid Interf. Sci. , 2019 . 550 210 -219 . DOI:10.1016/j.jcis.2019.05.003http://doi.org/10.1016/j.jcis.2019.05.003 .
Wang, D.; Song, L.; Zhou, K.; Yu, X.; Hu, Y.; Wang, J. . Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites . J. Mater. Chem. A , 2015 . 3 14307 -14317 . DOI:10.1039/C5TA01720Chttp://doi.org/10.1039/C5TA01720C .
Zhou, K.; Liu, J.; Zeng, W.; Hu, Y.; Gui, Z. . In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites . Compos. Sci. Technol. , 2015 . 107 120 -128 . DOI:10.1016/j.compscitech.2014.11.017http://doi.org/10.1016/j.compscitech.2014.11.017 .
Peng, H.; Wang, D.; Fu, S. . Tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: Significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers . Chem. Eng. J. , 2020 . 384 123288 DOI:10.1016/j.cej.2019.123288http://doi.org/10.1016/j.cej.2019.123288 .
Alvo, S.; Lambert, P.; Gauthier, M.; Régnier, S. . A van der waals force-based adhesion model for micromanipulation . J. Adhes. Sci. Technol. , 2010 . 24 2415 -2428 . DOI:10.1163/016942410X508334http://doi.org/10.1163/016942410X508334 .
Deng Y; Luo Z; Conrad NJ; Liu H; Gong Y; Najmaei S; Ajayan, P. M.; Lou, J.; Xu, X.; Ye, P. D. . Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode . ACS nano , 2014 . 8 8292 -8299 . DOI:10.1021/nn5027388http://doi.org/10.1021/nn5027388 .
Feng, X.; Wang, X.; Cai, W.; Hong, N.; Hu, Y.; Liew, K. M. . Integrated effect of supramolecular self-assembled sandwich-like melamine cyanurate/MoS2 hybrid sheets on reducing fire hazards of polyamide 6 composites . J. Hazard. Mater. , 2016 . 320 252 -264 . DOI:10.1016/j.jhazmat.2016.08.012http://doi.org/10.1016/j.jhazmat.2016.08.012 .
Xu, L.; Tan, X.; Xu, R.; Xie, J.; Lei, C. . Influence of functionalized molybdenum disulfide (MoS2) with triazine derivatives on the thermal stability and flame retardancy of intumescent poly(lactic acid) system . Polym. Compos. , 2019 . 40 2244 -2257 . DOI:10.1002/pc.25032http://doi.org/10.1002/pc.25032 .
Zhou, K.; Liu, J.; Gui, Z.; Hu, Y.; Jiang, S. . The influence of melamine phosphate modified MoS2 on the thermal and flammability of poly(butylene succinate) composites . Polym. Adv. Technol. , 2016 . 27 1397 -1400 . DOI:10.1002/pat.3824http://doi.org/10.1002/pat.3824 .
Feng, X.; Xing, W.; Song, L.; Hu, Y. . In situ synthesis of a MoS2/CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition . J. Mater. Chem. A , 2014 . 2 13299 -13308 . DOI:10.1039/C4TA01885Khttp://doi.org/10.1039/C4TA01885K .
Zhou, K.; Gao, R.; Qian, X. . Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy . J. Hazard. Mater. , 2017 . 338 343 -355 . DOI:10.1016/j.jhazmat.2017.05.046http://doi.org/10.1016/j.jhazmat.2017.05.046 .
Zhao, S.; Yin, J.; Zhou, K.; Cheng, Y.; Yu, B. . In situ fabrication of molybdenum disulfide based nanohybrids for reducing fire hazards of epoxy . Compos. Part A-Appl. S. , 2019 . 122 77 -84 . DOI:10.1016/j.compositesa.2019.04.023http://doi.org/10.1016/j.compositesa.2019.04.023 .
Li, A.; Xu, W.; Wang, G.; Wang, X. . Novel strategy for molybdenum disulfide nanosheets grown on titanate nanotubes for enhancing the flame retardancy and smoke suppression of epoxy resin . J. Appl. Polym. Sci. , 2018 . 135 46064 DOI:10.1002/app.46064http://doi.org/10.1002/app.46064 .
Peng, H.; Wang, D.; Li, M.; Zhang, L.; Liu, M.; Fu, S. . N-P-Zn-containing 2D supermolecular networks grown on MoS2 nanosheets for mechanical and flame-retardant reinforcements of polyacrylonitrile fiber . Chem. Eng. J. , 2019 . 372 873 -885 . DOI:10.1016/j.cej.2019.04.209http://doi.org/10.1016/j.cej.2019.04.209 .
Zhou, K. Q.; Zhang, Q. J.; Liu, J. J.; Wang, B.; Jiang, S. H.; Shi, Y. Q.; Hu, Y.; Gui, Z. . Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties . RSC Adv. , 2014 . 4 13205 -13214. .
Zhi, M.; Liu, Q.; Gao, S.; Zhao, Y.; Zhu, X.; Jia, X. . Layer-by-layer assembled nanocoating containing MoS2 nanosheets and C60 for enhancing flame retardancy properties of flexible polyurethane foam . Mater. Res. Express , 2019 . 6 125312 DOI:10.1088/2053-1591/ab556bhttp://doi.org/10.1088/2053-1591/ab556b .
Wang, D.; Xing, W.; Song, L.; Hu, Y. . Space-confined growth of defect-rich molybdenum disulfide nanosheets within graphene: application in the removal of smoke particles and toxic volatiles . ACS Appl. Mater. Interfaces , 2016 . 8 34735 -34743 . DOI:10.1021/acsami.6b09548http://doi.org/10.1021/acsami.6b09548 .
Peng, H.; Wang, D.; Li, M.; Zhang, L.; Liu, M.; Fu, S. . Ultra-small SiO2 nanospheres self-pollinated on flower-like MoS2 for simultaneously reinforcing mechanical, thermal and flame-retardant properties of polyacrylonitrile fiber . Compos. Part B-Eng. , 2019 . 174 107037 DOI:10.1016/j.compositesb.2019.107037http://doi.org/10.1016/j.compositesb.2019.107037 .
Hou, Y.; Hu, Y.; Qiu, S.; Liu, L.; Xing, W.; Hu, W. . Bi2Se3 decorated recyclable liquid-exfoliated MoS2 nanosheets: towards suppress smoke emission and improve mechanical properties of epoxy resin . J. Hazard. Mater. , 2019 . 364 720 -732 . DOI:10.1016/j.jhazmat.2018.10.075http://doi.org/10.1016/j.jhazmat.2018.10.075 .
Wang, H.; Qiao, H.; Guo, J.; Sun, J.; Li, H.; Zhang, S.; Gu, X. . Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU) . Compos. Part B-Eng. , 2020 . 182 107498 DOI:10.1016/j.compositesb.2019.107498http://doi.org/10.1016/j.compositesb.2019.107498 .
Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. . A novel Co(II)-based metal-organic framework with phosphorus-containing structure: build for enhancing fire safety of epoxy . Compos. Sci. Technol. , 2017 . 152 231 -242 . DOI:10.1016/j.compscitech.2017.08.032http://doi.org/10.1016/j.compscitech.2017.08.032 .
Nabipour, H.; Nie, S.; Wang, X.; Song, L.; Hu, Y. . Zeolitic imidazolate framework-8/polyvinyl alcohol hybrid aerogels with excellent flame retardancy . Compos. Part A-Appl. S. , 2020 . 129 105720 DOI:10.1016/j.compositesa.2019.105720http://doi.org/10.1016/j.compositesa.2019.105720 .
Zhao, S.; Yin, L.; Zhou, Q.; Liu, C.; Zhou, K. . In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: towards for highly efficient oil spill cleanup and fire safety . Appl. Surf. Sci. , 2020 . 506 144700 DOI:10.1016/j.apsusc.2019.144700http://doi.org/10.1016/j.apsusc.2019.144700 .
Qiu, J.; Zhang, X.; Feng, Y.; Zhang, X.; Wang, H.; Yao, J. . Modified metal-organic frameworks as photocatalysts . Appl. Catal. B: Environ. , 2018 . 231 317 -342 . DOI:10.1016/j.apcatb.2018.03.039http://doi.org/10.1016/j.apcatb.2018.03.039 .
Guo, H.; Wang, Y.; Li, C.; Zhou, K. . Construction of sandwich-structured CoAl-layered double hydroxide@zeolitic imidazolate framework-67 (CoAl-LDH@ZIF-67) hybrids: towards enhancing the fire safety of epoxy resins . RSC Adv. , 2018 . 8 36114 -36122 . DOI:10.1039/C8RA06355Ahttp://doi.org/10.1039/C8RA06355A .
Ren, X.; Mei, Y.; Lian, P.; Xie, D.; Yang, Y.; Wang, Y.; Wang, Z. . A novel application of phosphorene as a flame retardant . Polymers , 2018 . 10 227 DOI:10.3390/polym10030227http://doi.org/10.3390/polym10030227 .
Ren, X.; Mei, Y.; Lian, P.; Xie, D.; Deng, W.; Wen, Y.; Luo, Y. . Fabrication and application of black phosphorene/graphene composite material as a flame retardant . Polymers , 2019 . 11 193 DOI:10.3390/polym11020193http://doi.org/10.3390/polym11020193 .
Ji, X.; Chen, D.; Wang, Q.; Shen, J.; Guo, S. . Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane . Compos. Sci. Technol. , 2018 . 163 49 -55 . DOI:10.1016/j.compscitech.2018.05.007http://doi.org/10.1016/j.compscitech.2018.05.007 .
Vivek, R.; Joseph, K.; Simon, G. P.; Bhattacharyya, A. R. . Melt-mixed composites of multi-walled carbon nanotubes and thermotropic liquid crystalline polymer: morphology, rheology and mechanical properties . Compos. Sci. Technol. , 2017 . 151 184 -192 . DOI:10.1016/j.compscitech.2017.07.024http://doi.org/10.1016/j.compscitech.2017.07.024 .
Qiu, S.; Zhou, Y.; Zhou, X.; Zhang, T.; Wang, C.; Yuen, R. K. K.; Hu, W.; Hu, Y. . Air-stable polyphosphazene-functionalized few-layer black phosphorene for flame retardancy of epoxy resins . Small , 2019 . 15 1805175 DOI:10.1002/smll.201805175http://doi.org/10.1002/smll.201805175 .
Qu, Z.; Wu, K.; Jiao, E.; Chen, W.; Hu, Z.; Xu, C.; Shi, J.; Wang, S.; Tan, Z. . Surface functionalization of few-layer black phosphorene and its flame retardancy in epoxy resin . Chem. Eng. J. , 2020 . 382 122991 DOI:10.1016/j.cej.2019.122991http://doi.org/10.1016/j.cej.2019.122991 .
Qu, Z.; Wu, K.; Meng, W.; Nan, B.; Hu, Z.; Xu, C.; Tan, Z.; Zhang, Q.; Meng, H, Shi, J. . Surface coordination of black phosphorene for excellent stability, flame retardancy and thermal conductivity in epoxy resin . Chem. Eng. J. , 2020 . 397 125416 DOI:10.1016/j.cej.2020.125416http://doi.org/10.1016/j.cej.2020.125416 .
Luo, J.; Lai, J. P.; Zhang, N.; Liu, Y. B.; Liu, R.; Liu, X. Y. . Tannic acid induced self-assembly of three-dimensional graphene with good adsorption and antibacterial properties . ACS Sustain. Chem. Eng. , 2016 . 4 1404 -1413 . DOI:10.1021/acssuschemeng.5b01407http://doi.org/10.1021/acssuschemeng.5b01407 .
Kim, Y. O.; Cho, J.; Yeo, H.; Lee, B. W.; Moon, B. J.; Ha, Y. M.; Jo, Y. R.; Jung, Y. C. . Flame retardant epoxy derived from tannic acid as biobased hardener . ACS Sustain. Chem. Eng. , 2019 . 7 3858 -3865 . DOI:10.1021/acssuschemeng.8b04851http://doi.org/10.1021/acssuschemeng.8b04851 .
Zhou, Y.; Chu, F.; Qiu, S.; Guo, W.; Zhang, S.; Xu, Z.; Hu, W.; Hu, Y. . Construction of graphite oxide modified black phosphorus through covalent linkage: an efficient strategy for smoke toxicity and fire hazard suppression of epoxy resin . J. Hazard. Mater. , 2020 . 399 123015 DOI:10.1016/j.jhazmat.2020.123015http://doi.org/10.1016/j.jhazmat.2020.123015 .
Ren, X.; Zou, B.; Zhou, Y.; Zhao, Z.; Qiu, S.; Song, L. . Construction of few-layered black phosphorus/graphite-like carbon nitride binary hybrid nanostructure for reducing the fire hazards of epoxy resin . J. Colloid Interf. Sci. , 2021 . 586 692 -707 . DOI:10.1016/j.jcis.2020.10.139http://doi.org/10.1016/j.jcis.2020.10.139 .
Qu, Z.; Xu, C.; Hu, Z.; Li, Y.; Meng, H.; Tan, Z.; Shi, J.; Wu, K. . (CF3SO3) Er-decorated black phosphorene for robust ambient stability and excellent flame retardancy in epoxy resin . Compos. Part B-Eng. , 2020 . 202 108440 DOI:10.1016/j.compositesb.2020.108440http://doi.org/10.1016/j.compositesb.2020.108440 .
Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S. B.; Thakur, V. K. . Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review . Appl. Mater. Today , 2019 . 15 494 -524 . DOI:10.1016/j.apmt.2019.04.003http://doi.org/10.1016/j.apmt.2019.04.003 .
Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. . Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review . Carbon , 2019 . 149 693 -721 . DOI:10.1016/j.carbon.2019.04.104http://doi.org/10.1016/j.carbon.2019.04.104 .
Gao, H.; Zheng, C.; Yang, H.; Niu, X.; Wang, S. . Construction of a CQDs/Ag3PO4/BiPO4 Heterostructure Photocatalyst with Enhanced Photocatalytic Degradation of Rhodamine B under Simulated Solar Irradiation . Micromachines-basel , 2019 . 10 557 DOI:10.3390/mi10090557http://doi.org/10.3390/mi10090557 .
Cao, Q.; Kumru, B.; Antonietti, M.; Schmidt, B.V.K.J. . Graphitic carbon nitride and polymers: a mutual combination for advanced properties . Mater. Horiz. , 2020 . 7 762 -786 . DOI:10.1039/C9MH01497Ghttp://doi.org/10.1039/C9MH01497G .
Shi, Y.; Liu, C.; Fu, L.; Yang, F.; Lv, Y.; Yu, B. . Hierarchical assembly of polystyrene/graphitic carbon nitride/reduced graphene oxide nanocomposites toward high fire safety . Compos. Part B-Eng. , 2019 . 179 107541 DOI:10.1016/j.compositesb.2019.107541http://doi.org/10.1016/j.compositesb.2019.107541 .
Shi, Y.; Wang, L.; Fu, L.; Liu, C.; Yu, B.; Yang, F.; Hu, Y. . Sodium alginate-templated synthesis of g-C3N4/carbon spheres/Cu ternary nanohybrids for fire safety application . J. Colloid Interf. Sci. , 2019 . 539 1 -10 . DOI:10.1016/j.jcis.2018.12.051http://doi.org/10.1016/j.jcis.2018.12.051 .
Zhu, Y.; Shi, Y.; Huang, Z. Q.; Duan, L.; Tai, Q.; Hu, Y. . Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: Preparation and enhancement on thermal stability and flame retardancy of polystyrene . Compos. Part A-Appl. S. , 2017 . 99 149 -156 . DOI:10.1016/j.compositesa.2017.03.023http://doi.org/10.1016/j.compositesa.2017.03.023 .
Shi, Y.; Yu, B.; Duan, L.; Gui, Z.; Wang, B.; Hu, Y.; Yuen, R. K. K. . Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene . J. Hazard. Mater. , 2017 . 332 87 -96 . DOI:10.1016/j.jhazmat.2017.03.006http://doi.org/10.1016/j.jhazmat.2017.03.006 .
Leng, Y.; Xu, M. J.; Sun, Y.; Han, R. X.; Li, B. . Simultaneous enhancement of thermal conductivity and flame retardancy for epoxy resin thermosets through self-assemble of ammonium polyphosphate surface with graphitic carbon nitride . Polym. Adv. Technol. , 2019 . 30 2468 -2479 . DOI:10.1002/pat.4694http://doi.org/10.1002/pat.4694 .
Zhang, W.; Wu, W.; Meng, W.; Xie, W.; Cui, Y; Xu, J.; Qu, H. . Core-shell graphitic carbon nitride/zinc phytate as a novel efficient flame retardant for fire safety and smoke suppression in epoxy resin . Polymers , 2020 . 12 212 DOI:10.3390/polym12010212http://doi.org/10.3390/polym12010212 .
Shi, Y.; Yu, B.; Zhou, K.; Yuen, R. K.; Gui, Z.; Hu, Y.; Jiang, S. . Novel CuCo2O4/graphitic carbon nitride nanohybrids: highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites . J. Hazard. Mater. , 2015 . 293 87 -96 . DOI:10.1016/j.jhazmat.2015.03.041http://doi.org/10.1016/j.jhazmat.2015.03.041 .
Chen, Z.; Chen, T.; Yu, Y.; Zhang, Q.; Chen, Z.; Jiang, J. . Metal-organic framework MIL-53(Fe)@C/graphite carbon nitride hybrids with enhanced thermal stability, flame retardancy, and smoke suppression for unsaturated polyester resin . Polym. Adv. Technol. , 2019 . 30 2458 -2467 . DOI:10.1002/pat.4693http://doi.org/10.1002/pat.4693 .
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. . 25th Anniversary article: MXenes: a new family of two-dimensional materials . Adv. Mater. , 2014 . 26 992 -1005 . DOI:10.1002/adma.201304138http://doi.org/10.1002/adma.201304138 .
Lu, J.; Zhang, Y.; Tao, Y.; Wang, B.; Cheng, W.; Jie, G.; Song, L.; Hu, Y. . Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance . J. Colloid Interf. Sci. , 2020 . 588 164 -174. .
Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H. . Applications of 2D MXenes in energy conversion and storage systems . Chem. Soc. Rev. , 2019 . 48 72 -133 . DOI:10.1039/C8CS00324Fhttp://doi.org/10.1039/C8CS00324F .
He, L.; Wang, J.; Wang, B.; Wang, X.; Zhou, X.; Cai, W.; Mu, X.; Hou, Y.; Hu, Y.; Song, L. . Large-scale production of simultaneously exfoliated and functionalized Mxenes as promising flame retardant for polyurethane . Compos. Part B-Eng. , 2019 . 179 107486 DOI:10.1016/j.compositesb.2019.107486http://doi.org/10.1016/j.compositesb.2019.107486 .
Sheng, X.; Li, S.; Zhao, Y.; Zhai, D.; Zhang, L.; Lu, X. . Synergistic effects of two-dimensional MXene and ammonium polyphosphate on enhancing the fire safety of polyvinyl alcohol composite aerogels . Polymers , 2019 . 11 1964 DOI:10.3390/polym11121964http://doi.org/10.3390/polym11121964 .
Si, J. Y.; Tawiah, B.; Sun, W. L.; Lin, B.; Wang, C.; Yuen, A. C. Y.; Yu, B.; Li, A.;Yang, W.; Lu, H. D.; Chan, Q. N.; Yeoh, G. H. . Functionalization of MXene nanosheets for polystyrene towards high thermal stability and flame retardant properties . Polymers , 2019 . 11 976 DOI:10.3390/polym11060976http://doi.org/10.3390/polym11060976 .
Wang, N. N.; Wang, H.; Wang, Y. Y.; Wei, Y. H.; Si, J. Y.; Yuen, A. C. Y.; Xie, J. S.; Yu, B.; Zhu, S. E; Lu, H. D.; Yang, W.; Chan, Q. N.; Yeoh, G. H. . Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation . ACS Appl. Mater. Interfaces , 2019 . 11 40512 -40523 . DOI:10.1021/acsami.9b14265http://doi.org/10.1021/acsami.9b14265 .
Yu, B.; Tawiah, B.; Wang, L. Q.; Yuen, A. C. Y.; Zhang, Z. C.; Shen, L. L.; Liu, B.; Fei, B.; Yang, W.; Li, A.; Zhu, S. E.; Hu, E. Z.; Lu, H. D.; Yeoh, G. H. . Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer . J. Hazard. Mater. , 2019 . 374 110 -119 . DOI:10.1016/j.jhazmat.2019.04.026http://doi.org/10.1016/j.jhazmat.2019.04.026 .
Lin, B.; Yuen, A. C. Y.; Li, A.; Zhang, Y.; Chen, T. B. Y.; Yu, B.; Lee, E. W. M.; Peng, S.; Yang, W; Lu, H. D.; Chan, Q. N.; Yeoh, G. H.; Wang, C. H. . MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions . J. Hazard. Mater. , 2020 . 381 120952 DOI:10.1016/j.jhazmat.2019.120952http://doi.org/10.1016/j.jhazmat.2019.120952 .
Pan, Y.; Fu, L.; Zhou, Q.; Wen, Z.; Lin, C. T.; Yu, J.; Wang, W.; Zhao, H. . Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene) . Polym. Compos. , 2020 . 41 210 -218 . DOI:10.1002/pc.25361http://doi.org/10.1002/pc.25361 .
Shi, Y.; Liu, C.; Liu, L.; Fu, L.; Yu, B.; Lv, Y.; Yang, F.; Song, P. . Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement . Chem. Eng. J. , 2019 . 378 122267 DOI:10.1016/j.cej.2019.122267http://doi.org/10.1016/j.cej.2019.122267 .
Yu, B.; Yuen, A. C. Y.; Xu, X.; Zhang, Z. C.; Yang, W.; Lu, H.; Fei, B.; Yeoh, G. H.; Song, P.; Wang, H. . Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability . J. Hazard. Mater. , 2021 . 401 123342 DOI:10.1016/j.jhazmat.2020.123342http://doi.org/10.1016/j.jhazmat.2020.123342 .
Li, L.; Liu, X.; Wang, J.; Yang, Y.; Cao, Y.; Wang, W. . New application of MXene in polymer composites toward remarkable anti-dripping performance for flame retardancy . Compos. Part A-Appl. S. , 2019 . 127 105649 DOI:10.1016/j.compositesa.2019.105649http://doi.org/10.1016/j.compositesa.2019.105649 .
Jin, X.; Wang, J.; Dai, L.; Liu, X.; Li, L.; Yang, Y.; Cao, Y.; Wang, W.; Wu, H.; Guo, S. . Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances . Chem. Eng. J. , 2020 . 380 122475 DOI:10.1016/j.cej.2019.122475http://doi.org/10.1016/j.cej.2019.122475 .
0
浏览量
4
Downloads
1
CSCD
关联资源
相关文章
相关作者
相关机构