a.College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
b.Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
liufeng@hbu.edu.cn (F.L.)
wuyonggang@hbu.edu.cn (Y.G.W.)
liweiwei@iccas.ac.cn (W.W.L.)
Scan for full text
Chao Wang, Feng Liu, Qiao-Mei Chen, 等. Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells[J]. Chinese Journal of Polymer Science, 2021,39(5):525-536.
Chao Wang, Feng Liu, Qiao-Mei Chen, et al. Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells[J]. Chinese Journal of Polymer Science, 2021,39(5):525-536.
Chao Wang, Feng Liu, Qiao-Mei Chen, 等. Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells[J]. Chinese Journal of Polymer Science, 2021,39(5):525-536. DOI: 10.1007/s10118-021-2537-8.
Chao Wang, Feng Liu, Qiao-Mei Chen, et al. Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells[J]. Chinese Journal of Polymer Science, 2021,39(5):525-536. DOI: 10.1007/s10118-021-2537-8.
Benzothiadiazole (BT) is an electron-deficient unit with fused aromatic core, which can be used to construct conjugated polymers for application in organic solar cells (OSCs). In the past twenty years, huge numbers of conjugated polymers based on BT unit have been developed, focusing on the backbone engineering (such as by using different copolymerized building blocks), side chain engineering (such as by using linear or branch side units), using heteroatoms (such as F, O and S atoms, and CN group),etc,. These modifications enable BT-polymers to exhibit distinct absorption spectra (with onset varied from 600 nm to 1000 nm), different frontier energy levels and crystallinities. As a consequence, BT-polymers have gained much attention in recent years, and can be simultaneously used as electron donor and electron acceptor in OSCs, providing the power conversion efficiencies (PCEs) over 18% and 14% in non-fullerene and all-polymer OSCs. In this article, we provide an overview of BT-polymers for OSCs, from donor to acceptor,via, selecting some typical BT-polymers in different periods. We hope that the summary in this article can invoke the interest to study the BT-polymers toward high performance OSCs, especially with thick active layers that can be potentially used in large-area devices.
BenzothiadiazoleConjugated polymerOrganic solar cellsElectron donorElectron acceptor
Yeh, N.; Yeh, P. . Organic solar cells: their developments and potentials . Renew. Sus. Energy Rev. , 2013 . 21 421 -431 . DOI:10.1016/j.rser.2012.12.046http://doi.org/10.1016/j.rser.2012.12.046 .
He, P.; Li, Z.; Hou, Q.; Wang, Y. . Application of benzothiadiazole in organic solar cells . Chinese J. Org. Chem. , 2013 . 33 288 -304 . DOI:10.6023/cjoc201208009http://doi.org/10.6023/cjoc201208009 .
Cui, H. Q.; Peng, R. X.; Song, W.; Zhang, J. F.; Huang, J. M.; Zhu, L. Q.; Ge, Z. Y. . Optimization of ethylene glycol doped PEDOT:PSS transparent electrodes for flexible organic solar cells by drop-coating method . Chinese J. Polym. Sci. , 2019 . 37 760 -766 . DOI:10.1007/s10118-019-2257-5http://doi.org/10.1007/s10118-019-2257-5 .
Yan, N.; Zhao, C.; You, S.; Zhang, Y.; Li, W. . Recent progress of thin-film photovoltaics for indoor application . Chin. Chem. Lett. , 2020 . 31 643 -653 . DOI:10.1016/j.cclet.2019.08.022http://doi.org/10.1016/j.cclet.2019.08.022 .
Li, Y.; Xu, Y.; Yang, F.; Jiang, X.; Li, C.; You, S.; Li, W. . Simple non-fullerene electron acceptors with unfused core for organic solar cells . Chin. Chem. Lett. , 2019 . 30 222 -224 . DOI:10.1016/j.cclet.2018.09.014http://doi.org/10.1016/j.cclet.2018.09.014 .
Nielsen, C. B.; Holliday, S.; Chen, H. Y.; Cryer, S. J.; Mcculloch, I. . Non-fullerene electron acceptors for use in organic solar cells . Acc. Chem. Res. , 2015 . 48 2803 -2812 . DOI:10.1021/acs.accounts.5b00199http://doi.org/10.1021/acs.accounts.5b00199 .
Dang, D.; Yu, D.; Wang, E. . Conjugated donor-acceptor terpolymers toward high-efficiency polymer solar cells . Adv. Mater. , 2019 . 31 1807019 DOI:10.1002/adma.201807019http://doi.org/10.1002/adma.201807019 .
Li, C.; Wu, X.; Sui, X.; Wu, H.; Wang, C.; Feng, G.; Wu, Y.; Liu, F.; Liu, X.; Tang, Z.; Li, W. . Crystalline cooperativity of donor and acceptor segments in double-cable conjugated polymers toward efficient single-component organic solar cells . Angew. Chem. Int. Ed. , 2019 . 58 15532 -15540 . DOI:10.1002/anie.201910489http://doi.org/10.1002/anie.201910489 .
Zhao, C.; Guo, Y.; Zhang, Y.; Yan, N.; You, S.; Li, W. . Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells . J. Mater. Chem. A , 2019 . 7 10174 -10199 . DOI:10.1039/C9TA01976Fhttp://doi.org/10.1039/C9TA01976F .
Feng, G.; Li, J.; He, Y.; Zheng, W.; Wang, J.; Li, C.; Tang, Z.; Osvet, A.; Li, N.; Brabec, C. J.; Yi, Y.; Yan, H.; Li, W. . Thermal-driven phase separation of double-cable polymers enables efficient single-component organic solar cells . Joule , 2019 . 3 1765 -1781 . DOI:10.1016/j.joule.2019.05.008http://doi.org/10.1016/j.joule.2019.05.008 .
Liu, F.; Wang, D.; Li, J. Y.; Xiao, C. Y.; Wu, Y. G.; Li, W. W.; Fu, G. S. . Side-chains engineering of conjugated polymers toward additive-free non-fullerene organic solar cells . Chinese J. Polym. Sci. , 2021 . 39 43 -50 . DOI:10.1007/s10118-020-2490-yhttp://doi.org/10.1007/s10118-020-2490-y .
Liu, F.; Li, C.; Li, J.; Wang, C.; Xiao, C.; Wu, Y.; Li, W. . Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components . Chin. Chem. Lett. , 2020 . 31 865 -868 . DOI:10.1016/j.cclet.2019.06.051http://doi.org/10.1016/j.cclet.2019.06.051 .
Geng, Y. . Crystalline cooperativity in double-cable conjugated polymers . Acta Phys. Chim. Sin. , 2019 . 35 1311 -1312 . DOI:10.3866/PKU.WHXB201909019http://doi.org/10.3866/PKU.WHXB201909019 .
Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Xu, Y.; Xian, K.; Gao, B.; Qin, J.; Zhang, J.; Wei, Z.; Hou, J. . Achieving over 15% efficiency in organic photovoltaic cells via copolymer design . Adv. Mater. , 2019 . 31 1808356 DOI:10.1002/adma.201808356http://doi.org/10.1002/adma.201808356 .
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. . An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 . 27 1170 -1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Zhang, Y.; Xu, Y.; Ford, M. J.; Li, F.; Sun, J.; Ling, X.; Wang, Y.; Gu, J.; Yuan, J.; Ma, W. . Thermally stable all-polymer solar cells with high tolerance on blend ratios . Adv. Energy Mater. , 2018 . 8 1800029 DOI:10.1002/aenm.201800029http://doi.org/10.1002/aenm.201800029 .
Liu, S.; Yuan, J.; Deng, W.; Luo, M.; Xie, Y.; Liang, Q.; Zou, Y.; He, Z.; Wu, H.; Cao, Y. . High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder . Nat. Photonics , 2020 . 14 300 -305. .
Guo, Y.; Liu, Y.; Zhu, Q.; Li, C.; Jin, Y.; Puttisong, Y.; Chen, W.; Liu, F.; Zhang, F.; Ma, W.; Li, W. . Effect of side groups on the photovoltaic performance based on porphyrin-perylene bisimide electron acceptors . ACS Appl. Mater. Interfaces , 2018 . 10 32454 -32461 . DOI:10.1021/acsami.8b10955http://doi.org/10.1021/acsami.8b10955 .
Feng, S.; Lu, H.; Liu, Z.; Liu, Y.; Li, C.; Bo, Z. . Designing a high-performance A-D-A fused-ring electron acceptor via noncovalently conformational locking and tailoring Iits end groups . Acta Phys. Chim. Sin. , 2019 . 35 355 -360 . DOI:10.3866/PKU.WHXB201805161http://doi.org/10.3866/PKU.WHXB201805161 .
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. . 18% Efficiency organic solar cells . Sci. Bull. , 2020 . 65 272 -275 . DOI:10.1016/j.scib.2020.01.001http://doi.org/10.1016/j.scib.2020.01.001 .
Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. . Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells . J. Am. Chem. Soc. , 2011 . 133 9638 -9641 . DOI:10.1021/ja201131hhttp://doi.org/10.1021/ja201131h .
Liu, F.; Xiao, C.; Feng, G.; Li, C.; Wu, Y.; Zhou, E.; Li, W. . End group engineering on the side chains of conjugated polymers toward efficient non-fullerene organic solar cells . ACS Appl. Mater. Interfaces , 2020 . 12 6151 -6158 . DOI:10.1021/acsami.9b22275http://doi.org/10.1021/acsami.9b22275 .
Ma, J.; Feng, G.; Liu, F.; Yang, F.; Guo, Y.; Wu, Y.; Li, W. . A conjugated polymer based on alkylthio-substituted benzo[1,2-c:4,5-c′]dithiophene-4,8-dione acceptor for polymer solar cells . Dyes Pigments , 2019 . 165 335 -340 . DOI:10.1016/j.dyepig.2019.02.040http://doi.org/10.1016/j.dyepig.2019.02.040 .
Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. . PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics . Mater. Today , 2020 . 35 115 -130 . DOI:10.1016/j.mattod.2019.10.023http://doi.org/10.1016/j.mattod.2019.10.023 .
Yang, F.; Zhao, W.; Zhu, Q.; Li, C.; Ma, W.; Hou, J.; Li, W. . Boosting the performance of non-fullerene organic solar cells via cross-linked donor polymers design . Macromolecules , 2019 . 52 2214 -2221 . DOI:10.1021/acs.macromol.8b02526http://doi.org/10.1021/acs.macromol.8b02526 .
Zhang, Y.; Wang, Y.; Ma, R.; Luo, Z.; Liu, T.; Kang, S. H.; Yan, H.; Yuan, Z.; Yang, C.; Chen, Y. . Wide band-gap two-dimension conjugated polymer donors with different amounts of chlorine substitution on alkoxyphenyl conjugated side chains for non-fullerene polymer solar cells . Chinese J. Polym. Sci. , 2020 . 38 797 -805 . DOI:10.1007/s10118-020-2435-5http://doi.org/10.1007/s10118-020-2435-5 .
Ning, Z.; Tian, H. . Triarylamine: a promising core unit for efficient photovoltaic materials . Cheminform , 2009 . 41 5483 -5495. .
Pivrikas, A.; Neugebauer, H.; Sariciftci, N. S. . Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: a comparative review . Sol. Energy , 2011 . 85 1226 -1237 . DOI:10.1016/j.solener.2010.10.012http://doi.org/10.1016/j.solener.2010.10.012 .
Li, Y. . Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption . Acc. Chem. Res. , 2012 . 45 723 -733 . DOI:10.1021/ar2002446http://doi.org/10.1021/ar2002446 .
Qin, R.; Li, W.; Li, C.; Du, C.; Veit, C.; Schleiermacher, H. F.; Andersson, M.; Bo, Z.; Liu, Z.; Inganäs, O.; Wuerfel, U.; Zhang, F. . A planar copolymer for high efficiency polymer solar cells . J. Am. Chem. Soc. , 2009 . 131 14612 -14613 . DOI:10.1021/ja9057986http://doi.org/10.1021/ja9057986 .
Bouffard, J.; Swager, T. M. . Fluorescent conjugated polymers that incorporate substituted 2,1,3-benzooxadiazole and 2,1,3-benzothiadiazole units . Macromolecules , 2008 . 41 5559 -5562 . DOI:10.1021/ma8010679http://doi.org/10.1021/ma8010679 .
Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. . Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency . Angew. Chem. Int. Ed. , 2011 . 50 2995 -2998 . DOI:10.1002/anie.201005451http://doi.org/10.1002/anie.201005451 .
Neto, B. A. D.; Lapis, A. A. M.; da Silva Júnior, E. N.; Dupont, J. . 2,1,3-Benzothiadiazole and derivatives: synthesis, properties, reactions, and applications in light technology of small molecules . Eur. J. Org. Chem. , 2013 . 2013 228 -255. .
Heiskanen, J. P.; Vivo, P.; Saari, N. M.; Hukka, T. I.; Kastinen, T.; Kaunisto, K.; Lemmetyinen, H. J.; Hormi, O. E. O. . Synthesis of benzothiadiazole derivatives by applying C-C cross-couplings . J. Org. Chem. , 2016 . 81 1535 -1546 . DOI:10.1021/acs.joc.5b02689http://doi.org/10.1021/acs.joc.5b02689 .
Dhanabalan, A.; van Dongen, J. L. J.; van Duren, J. K. J.; Janssen, H. M.; van Hal, P. A.; Janssen, R. A. J. . Synthesis, characterization, and electrooptical properties of a new alternating N-dodecylpyrrole-benzothiadiazole copolymer . Macromolecules , 2001 . 34 2495 -2501 . DOI:10.1021/ma001732ehttp://doi.org/10.1021/ma001732e .
Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. . Efficient organic solar cells processed from hydrocarbon solvents . Nat. Energy , 2016 . 1 15027 DOI:10.1038/nenergy.2015.27http://doi.org/10.1038/nenergy.2015.27 .
Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. . 14.4% Efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor . Nano Energy , 2020 . 72 104718 DOI:10.1016/j.nanoen.2020.104718http://doi.org/10.1016/j.nanoen.2020.104718 .
Wang, M.; Li, C.; Lv, A.; Wang, Z.; Bo, Z. . Spirobifluorene-based conjugated polymers for polymer solar cells with high open-circuit voltage . Macromolecules , 2012 . 45 3017 -3022 . DOI:10.1021/ma202752hhttp://doi.org/10.1021/ma202752h .
Wang, N.; Chen, Z.; Wei, W.; Jiang, Z. . Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments . J. Am. Chem. Soc. , 2013 . 135 17060 -17068 . DOI:10.1021/ja409881ghttp://doi.org/10.1021/ja409881g .
Chochos, C. L.; Leclerc, N.; Gasparini, N.; Zimmerman, N.; Tatsi, E.; Katsouras, A.; Moschovas, D.; Serpetzoglou, E.; Konidakis, I.; Fall, S.; Lévêque, P.; Heiser, T.; Spanos, M.; Gregoriou, V. G.; Stratakis, E.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. . The role of chemical structure in indacenodithienothiophene-alt-benzothiadiazole copolymers for high performance organic solar cells with improved photo-stability through minimization of burn-in loss . J. Mater. Chem. A , 2017 . 5 25064 -25076 . DOI:10.1039/C7TA09224Ehttp://doi.org/10.1039/C7TA09224E .
Kini, G. P.; Hoang, Q. V.; Song, C. E.; Lee, S. K.; Shin, W. S.; So, W. W.; Uddin, M. A.; Woo, H. Y.; Lee, J. C. . Thiophene-benzothiadiazole based D-A1-D-A2 type alternating copolymers for polymer solar cells . Polym. Chem. , 2017 . 8 3622 -3631 . DOI:10.1039/C7PY00696Ahttp://doi.org/10.1039/C7PY00696A .
Kim, J. H.; Schaefer, C.; Ma, T.; Zhao, J.; Turner, J.; Ghasemi, M.; Constantinou, I.; So, F.; Yan, H.; Gadisa, A.; Ade, H. . The critical impact of material and process compatibility on the active layer morphology and performance of organic ternary solar cells . Adv. Energy Mater. , 2019 . 9 1802293 DOI:10.1002/aenm.201802293http://doi.org/10.1002/aenm.201802293 .
Singh, R.; Suranagi, S. R.; Lee, J.; Lee, H.; Kim, M.; Cho, K. . Unraveling the efficiency-limiting morphological issues of the perylene diimide-based non-fullerene organic solar cells . Sci. Rep. , 2018 . 8 2849 DOI:10.1038/s41598-018-21162-xhttp://doi.org/10.1038/s41598-018-21162-x .
Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. . Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols . Nat. Mater. , 2007 . 6 497 -500 . DOI:10.1038/nmat1928http://doi.org/10.1038/nmat1928 .
Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen, R. A. J. . Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells . Adv. Funct. Mater. , 2001 . 11 255 -262 . DOI:10.1002/1616-3028(200108)11:4<255::AID-ADFM255>3.0.CO;2-Ihttp://doi.org/10.1002/1616-3028(200108)11:4<255::AID-ADFM255>3.0.CO;2-I .
Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganäs, O.; Andersson, M. R. . High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative . Adv. Mater. , 2003 . 15 988 -991 . DOI:10.1002/adma.200304150http://doi.org/10.1002/adma.200304150 .
Blouin, N.; Michaud, A.; Leclerc, M. . A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells . Adv. Mater. , 2007 . 19 2295 -2300 . DOI:10.1002/adma.200602496http://doi.org/10.1002/adma.200602496 .
Bundgaard, E.; Krebs, F. C. . A comparison of the photovoltaic response of head-to-head and head-to-tail coupled poly{(benzo-2,1,3-thiadiazol-4,7-diyl)-(dihexyl[2,2′]dithiophene-5,5′-diyl} . Polym. Bull. , 2005 . 55 157 -164 . DOI:10.1007/s00289-005-0423-0http://doi.org/10.1007/s00289-005-0423-0 .
Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Mühlbacher, D.; Scharber, M.; Brabec, C. . Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications . Macromolecules , 2007 . 40 1981 -1986 . DOI:10.1021/ma062376ohttp://doi.org/10.1021/ma062376o .
Beaupré, S.; Leclerc, M. . PCDTBT: en route for low cost plastic solar cells . J. Mater. Chem. A , 2013 . 1 11097 DOI:10.1039/c3ta12420ghttp://doi.org/10.1039/c3ta12420g .
Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. . Bulk heterojunction solar cells with internal quantum efficiency approaching 100% . Nat. Photonics , 2009 . 3 297 -302 . DOI:10.1038/nphoton.2009.69http://doi.org/10.1038/nphoton.2009.69 .
Song, J.; Bo, Z. . Planar copolymers for high-efficiency polymer solar cells . Sci. China Chem. , 2019 . 62 9 -13 . DOI:10.1007/s11426-018-9363-8http://doi.org/10.1007/s11426-018-9363-8 .
Subbiah, J.; Purushothaman, B.; Chen, M.; Qin, T.; Gao, M.; Vak, D.; Scholes, F. H.; Chen, X.; Watkins, S. E.; Wilson, G. J.; Holmes, A. B.; Wong, W. W. H.; Jones, D. J. . Organic solar cells using a high-molecular-weight benzodithiophene-benzothiadiazole copolymer with an efficiency of 9.4% . Adv. Mater. , 2015 . 27 702 -705 . DOI:10.1002/adma.201403080http://doi.org/10.1002/adma.201403080 .
Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; Qu, Y.; Ma, W.; Yan, H. . Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells . J. Am. Chem. Soc. , 2015 . 137 14149 -14157 . DOI:10.1021/jacs.5b08556http://doi.org/10.1021/jacs.5b08556 .
Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. . Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells . Nat. Commun. , 2014 . 5 5293 DOI:10.1038/ncomms6293http://doi.org/10.1038/ncomms6293 .
Hu, H.; Chow, P. C. Y.; Zhang, G.; Ma, T.; Liu, J.; Yang, G.; Yan, H. . Design of donor polymers with strong temperature-dependent aggregation property for efficient organic photovoltaics . Acc. Chem. Res. , 2017 . 50 2519 -2528 . DOI:10.1021/acs.accounts.7b00293http://doi.org/10.1021/acs.accounts.7b00293 .
Chen, Z.; Cai, P.; Chen, J.; Liu, X.; Zhang, L.; Lan, L.; Peng, J.; Ma, Y.; Cao, Y. . Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells . Adv. Mater. , 2014 . 26 2586 -2591 . DOI:10.1002/adma.201305092http://doi.org/10.1002/adma.201305092 .
Hou, J.; Chen, H. Y.; Zhang, S.; Li, G.; Yang, Y. . Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole . J. Am. Chem. Soc. , 2008 . 130 16144 -16145 . DOI:10.1021/ja806687uhttp://doi.org/10.1021/ja806687u .
You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y. . A polymer tandem solar cell with 10.6% power conversion efficiency . Nat. Commun. , 2013 . 4 1446 DOI:10.1038/ncomms2411http://doi.org/10.1038/ncomms2411 .
Shi, S.; Liao, Q.; Tang, Y.; Guo, H.; Zhou, X.; Wang, Y.; Yang, T.; Liang, Y.; Cheng, X.; Liu, F.; Guo, X. . Head-to-head linkage containing bithiophene-based polymeric semiconductors for highly efficient polymer solar cells . Adv. Mater. , 2016 . 28 9969 -9977 . DOI:10.1002/adma.201603112http://doi.org/10.1002/adma.201603112 .
Li, W.; Cai, J.; Cai, F.; Yan, Y.; Yi, H.; Gurney, R. S.; Liu, D.; Iraqi, A.; Wang, T. . Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination . Nano Energy , 2018 . 44 155 -163 . DOI:10.1016/j.nanoen.2017.12.005http://doi.org/10.1016/j.nanoen.2017.12.005 .
Li, W.; Hendriks, K. H.; Furlan, A.; Roelofs, W. S. C.; Wienk, M. M.; Janssen, R. A. J. . Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells . J. Am. Chem. Soc. , 2013 . 135 18942 -18948 . DOI:10.1021/ja4101003http://doi.org/10.1021/ja4101003 .
Nketia-Yawson, B.; Lee, H. S.; Seo, D.; Yoon, Y.; Park, W. T.; Kwak, K.; Son, H. J.; Kim, B.; Noh, Y. Y. . A highly planar fluorinated benzothiadiazole-based conjugated polymer for high-performance organic thin-film transistors . Adv. Mater. , 2015 . 27 3045 -3052 . DOI:10.1002/adma.201500233http://doi.org/10.1002/adma.201500233 .
Liu, X.; Nian, L.; Gao, K.; Zhang, L.; Qing, L.; Wang, Z.; Ying, L.; Xie, Z.; Ma, Y.; Cao, Y.; Liu, F.; Chen, J. . Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells . J. Mater. Chem. A , 2017 . 5 17619 -17631 . DOI:10.1039/C7TA05583Hhttp://doi.org/10.1039/C7TA05583H .
Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. . Non-fullerene acceptors for organic solar cells . Nat. Rev. Mater. , 2018 . 3 18003 DOI:10.1038/natrevmats.2018.3http://doi.org/10.1038/natrevmats.2018.3 .
Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. . Organic solar cells based on non-fullerene acceptors . Nat. Mater. , 2018 . 17 119 DOI:10.1038/nmat5063http://doi.org/10.1038/nmat5063 .
Zhang, Z.; Zhang, S.; Liu, Z.; Zhang, Z.; Li, Y.; Li, C.; Chen, H. . A simple electron acceptor with unfused backbone for polymer solar cells . Acta Phys. Chim. Sin. , 2019 . 35 394 -400 . DOI:10.3866/PKU.WHXB201805091http://doi.org/10.3866/PKU.WHXB201805091 .
Lin, H.; Chen, S.; Li, Z.; Lai, J. Y. L.; Yang, G.; McAfee, T.; Jiang, K.; Li, Y.; Liu, Y.; Hu, H.; Zhao, J.; Ma, W.; Ade, H.; Yan, H. . High-performance non-fullerene polymer solar cells based on a pair of donor-acceptor materials with complementary absorption properties . Adv. Mater. , 2015 . 27 7299 -7304 . DOI:10.1002/adma.201502775http://doi.org/10.1002/adma.201502775 .
Kini, G. P.; Choi, J. Y.; Jeon, S. J.; Suh, I. S.; Moon, D. K. . Effect of mono alkoxy-carboxylate-functionalized benzothiadiazole-based donor polymers for non-fullerene solar cells . Dyes Pigments , 2019 . 164 62 -71 . DOI:10.1016/j.dyepig.2018.12.058http://doi.org/10.1016/j.dyepig.2018.12.058 .
An, C.; Zheng, Z.; Hou, J. . Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics . Chem. Commun. , 2020 . 56 4750 -4760 . DOI:10.1039/D0CC01038Chttp://doi.org/10.1039/D0CC01038C .
Hu, H.; Jiang, K.; Chow, P. C. Y.; Ye, L.; Zhang, G.; Li, Z.; Carpenter, J. H.; Ade, H.; Yan, H. . Influence of donor polymer on the molecular ordering of small molecular acceptors in nonfullerene polymer solar cells . Adv. Energy Mater. , 2018 . 8 1701674 DOI:10.1002/aenm.201701674http://doi.org/10.1002/aenm.201701674 .
Zhang, J.; Liu, W.; Zhang, M.; Xu, S.; Liu, F.; Zhu, X. . PCE11-based polymer solar cells with high efficiency over 13% achieved by room-temperature processing . J. Mater. Chem. A , 2020 . 8 8661 -8668 . DOI:10.1039/D0TA02271Chttp://doi.org/10.1039/D0TA02271C .
Chen, Z.; Hu, Z.; Liang, Y.; Zhou, C.; Xiao, J.; Zhang, G.; Huang, F. . Highly efficient, green-solvent processable, and stable non-fullerene polymer solar cells enabled by a random polymer donor . Org. Electron. , 2020 . 85 105874 DOI:10.1016/j.orgel.2020.105874http://doi.org/10.1016/j.orgel.2020.105874 .
Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z. G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganäs, O.; Li, Y.; Zhan, X. . Mapping polymer donors toward high-efficiency fullerene free organic solar cells . Adv. Mater. , 2017 . 29 1604155 DOI:10.1002/adma.201604155http://doi.org/10.1002/adma.201604155 .
Gong, X.; Li, G.; Feng, S.; Wu, L.; Liu, Y.; Hou, R.; Li, C.; Chen, X.; Bo, Z. . Influence of polymer side chains on the photovoltaic performance of non-fullerene organic solar cells . J. Mater. Chem. C , 2017 . 5 937 -942. .
Xie, Y.; Xia, R.; Li, T.; Ye, L.; Zhan, X.; Yip, H. L.; Sun, Y. . Highly transparent organic solar cells with all-near-infrared photoactive materials . Small Methods , 2019 . 3 1900424 DOI:10.1002/smtd.201900424http://doi.org/10.1002/smtd.201900424 .
Zhao, J.; Li, Y.; Lin, H.; Liu, Y.; Jiang, K.; Mu, C.; Ma, T.; Lai, J. Y. L.; Hu, H.; Yu, D.; Yan, H. . High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor . Energy Environ. Sci. , 2015 . 8 520 -525 . DOI:10.1039/C4EE02990Ahttp://doi.org/10.1039/C4EE02990A .
Chen, S.; Zhang, L.; Ma, C.; Meng, D.; Zhang, J.; Zhang, G.; Li, Z.; Chow, P. C. Y.; Ma, W.; Wang, Z.; Wong, K. S.; Ade, H.; Yan, H. . Alkyl chain regiochemistry of benzotriazole-based donor polymers influencing morphology and performances of non-fullerene organic solar cells . Adv. Energy Mater. , 2018 . 8 1702427 DOI:10.1002/aenm.201702427http://doi.org/10.1002/aenm.201702427 .
Chen, S.; Wang, Y.; Zhang, L.; Zhao, J.; Chen, Y.; Zhu, D.; Yao, H.; Zhang, G.; Ma, W.; Friend, R. H.; Chow, P. C. Y.; Gao, F.; Yan, H. . Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer . Adv. Mater. , 2018 . 30 1804215 DOI:10.1002/adma.201804215http://doi.org/10.1002/adma.201804215 .
Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.; Gao, F.; Yan, H. . Fast charge separation in a non-fullerene organic solar cell with a small driving force . Nat. Energy , 2016 . 1 16089 DOI:10.1038/nenergy.2016.89http://doi.org/10.1038/nenergy.2016.89 .
Zhang, J.; Li, Y.; Huang, J.; Hu, H.; Zhang, G.; Ma, T.; Chow, P. C. Y.; Ade, H.; Pan, D.; Yan, H. . Ring-fusion of perylene diimide acceptor enabling efficient nonfullerene organic solar cells with a small voltage loss . J. Am. Chem. Soc. , 2017 . 139 16092 -16095 . DOI:10.1021/jacs.7b09998http://doi.org/10.1021/jacs.7b09998 .
Zhang, X.; Zhang, J.; Lu, H.; Wu, J.; Li, G.; Li, C.; Li, S.; Bo, Z. . A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage . J. Mater. Chem. C , 2015 . 3 6979 -6985 . DOI:10.1039/C5TC01148Ehttp://doi.org/10.1039/C5TC01148E .
Hou, R.; Feng, S.; Gong, X.; Liu, Y.; Zhang, J.; Li, C.; Bo, Z. . Side chain effect of nonfullerene acceptors on the photovoltaic performance of wide band gap polymer solar cells . Synth. Met. , 2016 . 220 578 -584 . DOI:10.1016/j.synthmet.2016.07.015http://doi.org/10.1016/j.synthmet.2016.07.015 .
Zhang, J.; Zhang, X.; Li, G.; Xiao, H.; Li, W.; Xie, S.; Li, C.; Bo, Z. . A nonfullerene acceptor for wide band gap polymer based organic solar cells . Chem. Commun. , 2016 . 52 469 -472 . DOI:10.1039/C5CC08023Ahttp://doi.org/10.1039/C5CC08023A .
Kang, H.; Uddin, M. A.; Lee, C.; Kim, K. H.; Nguyen, T. L.; Lee, W.; Li, Y.; Wang, C.; Woo, H. Y.; Kim, B. J. . Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation . J. Am. Chem. Soc. , 2015 . 137 2359 -2365 . DOI:10.1021/ja5123182http://doi.org/10.1021/ja5123182 .
Kranthiraja, K.; Kim, S.; Lee, C.; Gunasekar, K.; Sree, V. G.; Gautam, B.; Gundogdu, K.; Jin, S. H.; Kim, B. J. . The impact of sequential fluorination of π-conjugated polymers on charge generation in all-polymer solar cells . Adv. Funct. Mater. , 2017 . 27 1701256 DOI:10.1002/adfm.201701256http://doi.org/10.1002/adfm.201701256 .
Wang, N.; Zhang, S.; Zhao, R.; Feng, J.; Ding, Z.; Ma, W.; Hu, J.; Liu, J. . Designed polymer donors to match an amorphous polymer acceptor in all-polymer solar cells . ACS Appl. Electron. Mater. , 2020 . 2 2274 -2281 . DOI:10.1021/acsaelm.0c00451http://doi.org/10.1021/acsaelm.0c00451 .
Ge, C. W.; Mei, C. Y.; Ling, J.; Wang, J. T.; Zhao, F. G.; Liang, L.; Li, H. J.; Xie, Y. S.; Li, W. S. . Acceptor-acceptor conjugated copolymers based on perylenediimide and benzothiadiazole for all-polymer solar cells . J. Polym. Sci., Part A: Polym. Chem. , 2014 . 52 1200 -1215 . DOI:10.1002/pola.27108http://doi.org/10.1002/pola.27108 .
Liu, F.; Li, H.; Wu, Y.; Gu, C.; Fu, H. . Naphthalene diimide and benzothiadiazole copolymer acceptor for all-polymer solar cells with improved open-circuit voltage and morphology . RSC Adv. , 2015 . 5 92151 -92158 . DOI:10.1039/C5RA14887Ahttp://doi.org/10.1039/C5RA14887A .
Liu, M.; Yang, J.; Yin, Y.; Zhang, Y.; Zhou, E.; Guo, F.; Zhao, L. . Novel perylene diimide-based polymers with electron-deficient segments as the comonomer for efficient all-polymer solar cells . J. Mater. Chem. A , 2018 . 6 414 -422 . DOI:10.1039/C7TA09930Dhttp://doi.org/10.1039/C7TA09930D .
Tang, A.; Li, J.; Zhang, B.; Peng, J.; Zhou, E. . Low-bandgap n-type polymer based on a fused-DAD-type heptacyclic ring for all-polymer solar cell application with a power conversion efficiency of 10.7% . ACS Macro Lett. , 2020 . 9 706 -712 . DOI:10.1021/acsmacrolett.0c00234http://doi.org/10.1021/acsmacrolett.0c00234 .
Zhao, R.; Wang, N.; Yu, Y.; Liu, J. . Organoboron polymer for 10% efficiency all-polymer solar cells . Chem. Mater. , 2020 . 32 1308 -1314 . DOI:10.1021/acs.chemmater.9b04997http://doi.org/10.1021/acs.chemmater.9b04997 .
Wang, N.; Yu, Y.; Zhao, R.; Ding, Z.; Liu, J.; Wang, L. . Improving active layer morphology of all-polymer solar cells by solution temperature . Macromolecules , 2020 . 53 3325 -3331 . DOI:10.1021/acs.macromol.0c00633http://doi.org/10.1021/acs.macromol.0c00633 .
McNeill, C. R.; Abrusci, A.; Zaumseil, J.; Wilson, R.; McKiernan, M. J.; Burroughes, J. H.; Halls, J. J. M.; Greenham, N. C.; Friend, R. H. . Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes . Appl. Phys. Lett. , 2007 . 90 193506 DOI:10.1063/1.2738197http://doi.org/10.1063/1.2738197 .
McNeill, C. R.; Halls, J. J. M.; Wilson, R.; Whiting, G. L.; Berkebile, S.; Ramsey, M. G.; Friend, R. H.; Greenham, N. C. . Efficient polythiophene/polyfluorene copolymer bulk heterojunction photovoltaic devices: device physics and annealing effects . Adv. Funct. Mater. , 2008 . 18 2309 -2321 . DOI:10.1002/adfm.200800182http://doi.org/10.1002/adfm.200800182 .
Sepe, A.; Rong, Z.; Sommer, M.; Vaynzof, Y.; Sheng, X.; Müller-Buschbaum, P.; Smilgies, D. M.; Tan, Z. K.; Yang, L.; Friend, R. H.; Steiner, U.; Hüttner, S. . Structure formation in P3HT/F8TBT blends . Energy Environ. Sci. , 2014 . 7 1725 -1736 . DOI:10.1039/C3EE44125Chttp://doi.org/10.1039/C3EE44125C .
McNeill, C. R.; Abrusci, A.; Hwang, I.; Ruderer, M. A.; Müller-Buschbaum, P.; Greenham, N. C. . Photophysics and photocurrent generation in polythiophene/polyfluorene copolymer blends . Adv. Funct. Mater. , 2009 . 19 3103 -3111 . DOI:10.1002/adfm.200900801http://doi.org/10.1002/adfm.200900801 .
Shi, S.; Chen, P.; Chen, Y.; Feng, K.; Liu, B.; Chen, J.; Liao, Q.; Tu, B.; Luo, J.; Su, M.; Guo, H.; Kim, M. G.; Facchetti, A.; Guo, X. . A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells . Adv. Mater. , 2019 . 31 1905161 DOI:10.1002/adma.201905161http://doi.org/10.1002/adma.201905161 .
Feng, K.; Huang, J.; Zhang, X.; Wu, Z.; Shi, S.; Thomsen, L.; Tian, Y.; Woo, H. Y.; McNeill, C. R.; Guo, X. . High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV . Adv. Mater. , 2020 . 32 2001476 DOI:10.1002/adma.202001476http://doi.org/10.1002/adma.202001476 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. . Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M.; Yang, W.; Li, H.; Min, J. . Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells . Joule , 2020 . 4 1070 -1086 . DOI:10.1016/j.joule.2020.03.019http://doi.org/10.1016/j.joule.2020.03.019 .
Du, J.; Hu, K.; Meng, L.; Angunawela, I.; Zhang, J.; Qin, S.; Liebman-Pelaez, A.; Zhu, C.; Zhang, Z.; Ade, H.; Li, Y. . High-performance all-polymer solar cells: synthesis of polymer acceptor by a random ternary copolymerization strategy . Angew. Chem. Int. Ed. , 2020 . 59 15181 -15185 . DOI:10.1002/anie.202005357http://doi.org/10.1002/anie.202005357 .
Gobalasingham, N. S.; Carlé, J. E.; Krebs, F. C.; Thompson, B. C.; Bundgaard, E.; Helgesen, M. . Conjugated polymers via direct arylation polymerization in continuous flow: minimizing the cost and batch-to-batch variations for high-throughput energy conversion . Macromol. Rapid Commun. , 2017 . 38 1700526 DOI:10.1002/marc.201700526http://doi.org/10.1002/marc.201700526 .
Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. . Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state . Macromolecules , 2012 . 45 9611 -9617 . DOI:10.1021/ma301900hhttp://doi.org/10.1021/ma301900h .
0
浏览量
4
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构