a.The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
b.School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
c.School of Materials Science & Energy Engineering, Foshan University, Foshan 528000, China
stsxm@mail.sysu.edu.cn (M.X.)
mengyzh@mail.sysu.edu.cn (Y.Z.M.)
Scan for full text
Li-Miao Lin, Yong-Hang Xu, Man Shen, 等. A Potential Alternative to Polystyrene: Ring-opening Terpolymerization of Different Epoxides with Phthalic Anhydride Using Metal-free Dual Catalysts[J]. Chinese Journal of Polymer Science, 2021,39(3):337-343.
Li-Miao Lin, Yong-Hang Xu, Man Shen, et al. A Potential Alternative to Polystyrene: Ring-opening Terpolymerization of Different Epoxides with Phthalic Anhydride Using Metal-free Dual Catalysts[J]. Chinese Journal of Polymer Science, 2021,39(3):337-343.
Li-Miao Lin, Yong-Hang Xu, Man Shen, 等. A Potential Alternative to Polystyrene: Ring-opening Terpolymerization of Different Epoxides with Phthalic Anhydride Using Metal-free Dual Catalysts[J]. Chinese Journal of Polymer Science, 2021,39(3):337-343. DOI: 10.1007/s10118-020-2495-6.
Li-Miao Lin, Yong-Hang Xu, Man Shen, et al. A Potential Alternative to Polystyrene: Ring-opening Terpolymerization of Different Epoxides with Phthalic Anhydride Using Metal-free Dual Catalysts[J]. Chinese Journal of Polymer Science, 2021,39(3):337-343. DOI: 10.1007/s10118-020-2495-6.
A series of semi-aromatic polyesters named as Poly(PO-CHO-PA) were facilely synthesized ,via, ring-opening terpolymerization of bio-based cyclohexane oxide (CHO)/propylene oxide (PO)/phthalic anhydride (PA) using economical U1/PPNCl as dual catalyst. The proportion of CHO-PA and PO-PA segments in polymer can be readily altered by changing the feed ratio of CHO/PO because the reactivity ratios of CHO and PO with PA calculated by Fineman-Ross method are comparable. All synthesized amorphous polyesters with various compositions show one ,T,g, ranging from 62 °C to 133 °C. Significantly, the mechanical, thermal and barrier properties of these amorphous semi-aromatic polyesters are also adjustable and investigated for the first time. The results indicate the semi-polyesters exhibit superior thermostability (,T,5%, ranging from 306 °C to 323 °C) and high tensile strength (40.21−55.7 MPa) that is comparable with polystyrene (PS). Furthermore, Poly(PO-CHO-PA) films possess a promising prospect as packaging materials because of its colorless and highly transparent nature, along with low oxygen and water vapor transmission rate. All above performances may guarantee its potential alternative to commercial PS.
Aromatic polyesterRing-opening polymerizationMetal-free catalystPolystyreneBarrier properties
Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. . A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry . Green Chem. , 2017 . 19 4737 -4753 . DOI:10.1039/C7GC02521Ahttp://doi.org/10.1039/C7GC02521A .
Albertsson, A. C.; Varma, I. K. . Recent developments in ring opening polymerization of lactones for biomedical applications . Biomacromolecules , 2003 . 4 1466 -1486 . DOI:10.1021/bm034247ahttp://doi.org/10.1021/bm034247a .
Hillmyer, M. A.; Tolman, W. B. . Aliphatic polyester block polymers: renewable, degradable, and sustainable . Acc. Chem. Res. , 2014 . 47 2390 -6 . DOI:10.1021/ar500121dhttp://doi.org/10.1021/ar500121d .
Xu, Y.; Lin, L.; Zeng, S.; Liu, J.; Xiao, M.; Wang, S.; Meng, Y.; Sun, L. . Synthesis of polylactide nanocomposites using an α-zirconium phosphate nanosheet-supported zinc catalyst via in situ polymerization . ACS Appl. Polym. Mater. , 2019 . 1 1382 -1389 . DOI:10.1021/acsapm.9b00155http://doi.org/10.1021/acsapm.9b00155 .
Xu, Y.; Zhou, F.; Zhou, D.; Mo, J.; Hu, H.; Lin, L.; Wu, J.; Yu, M.; Zhang, M.; Chen, H. . Degradation behaviors of biodegradable aliphatic polyesters and polycarbonates . J. Biobased Mater. Bioenergy , 2020 . 14 155 -168 . DOI:10.1166/jbmb.2020.1958http://doi.org/10.1166/jbmb.2020.1958 .
Odian, G. Step polymerization. In Principles of polymerization. New York: Wiley-Interscience, 2004, p. 39−197.
Carothers, W. H. . Studies on polymerization and ring formation. I. An introduction to the general theory of condensation polymers . J. Am. Chem. Soc. , 1929 . 51 2548 -2559 . DOI:10.1021/ja01383a041http://doi.org/10.1021/ja01383a041 .
Vilela, C.; Sousa, A. F.; Fonseca, A. C.; Serra, A. C.; Coelho, J. F. J.; Freire, C. S. R.; Silvestre, A. J. D. . The quest for sustainable polyesters—insights into the future . Polym. Chem. , 2014 . 5 3119 -3141 . DOI:10.1039/C3PY01213Ahttp://doi.org/10.1039/C3PY01213A .
East, A. J. . Polyesters, thermoplastic . Kirk‐Othmer Encyclopedia of Chemical Technology, , 2006 .
Guillaume, S. M.; Kirillov, E.; Sarazin, Y.; Carpentier, J. F. . Beyond stereoselectivity, switchable catalysis: some of the last frontier challenges in ring-opening polymerization of cyclic esters . Chem. Eur. J. , 2015 . 21 7988 -8003 . DOI:10.1002/chem.201500613http://doi.org/10.1002/chem.201500613 .
Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. . Controlled ring-opening polymerization of lactide and glycolide . Chem. Rev. , 2004 . 104 6147 -6176 . DOI:10.1021/cr040002shttp://doi.org/10.1021/cr040002s .
Lecomte, P.; Jérôme, C. Recent developments in ring-opening polymerization of lactones. In Synthetic biodegradable polymers, Springer Berlin Heidelberg: Berlin, Heidelberg, 2012, p. 173−217.
Longo, J. M.; Sanford, M. J.; Coates, G. W. . Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure-property relationships . Chem. Rev. , 2016 . 116 15167 -15197 . DOI:10.1021/acs.chemrev.6b00553http://doi.org/10.1021/acs.chemrev.6b00553 .
Han, B.; Zhang, L.; Liu, B.; Dong, X.; Kim, I.; Duan, Z.; Theato, P. . Controllable synthesis of stereoregular polyesters by organocatalytic alternating copolymerizations of cyclohexene oxide and norbornene anhydrides . Macromolecules , 2015 . 48 3431 -3437 . DOI:10.1021/acs.macromol.5b00555http://doi.org/10.1021/acs.macromol.5b00555 .
Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. . Catalysis as an enabling science for sustainable polymers . Chem. Rev. , 2018 . 118 839 -885 . DOI:10.1021/acs.chemrev.7b00329http://doi.org/10.1021/acs.chemrev.7b00329 .
Nejad, E. H.; Paoniasari, A.; van, Melis C. G. W.; Koning, C. E.; Duchateau, R. . Catalytic ring-opening copolymerization of limonene oxide and phthalic anhydride: toward partially renewable polyesters . Macromolecules , 2013 . 46 631 -637 . DOI:10.1021/ma301904yhttp://doi.org/10.1021/ma301904y .
Longo, J. M.; DiCiccio, A. M.; Coates, G. W. . Poly(propylene succinate): a new polymer stereocomplex . J. Am. Chem. Soc. , 2014 . 136 15897 -15900 . DOI:10.1021/ja509440ghttp://doi.org/10.1021/ja509440g .
Du, Z.; Ma, J.; Wang, F.; Liu, J.; Xu, J. . Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen . Green Chem. , 2011 . 13 554 -557 . DOI:10.1039/c0gc00837khttp://doi.org/10.1039/c0gc00837k .
Rashed, M. N.; Siddiki, S. M. A. H.; Ali, M. A.; Moromi, S. K.; Touchy, A. S.; Kon, K.; Toyao, T.; Shimizu, K. I. . Heterogeneous catalysts for the cyclization of dicarboxylic acids to cyclic anhydrides as monomers for bioplastic production . Green Chem. , 2017 . 19 3238 -3242 . DOI:10.1039/C7GC00538Ehttp://doi.org/10.1039/C7GC00538E .
Peña Carrodeguas, L.; Martín, C.; Kleij, A. W. . Semiaromatic polyesters derived from renewable terpene oxides with high glass transitions . Macromolecules , 2017 . 50 5337 -5345 . DOI:10.1021/acs.macromol.7b00862http://doi.org/10.1021/acs.macromol.7b00862 .
Winkler, M.; Romain, C.; Meier, M.; Williams, C. . Renewable polycarbonates and polyesters from 1,4-cyclohexadiene . Green Chem. , 2014 . 17 300 -306. .
Yu, Z.; Xu, L.; Wei, Y.; Wang, Y.; He, Y.; Xia, Q.; Zhang, X.; Liu, Z. . A new route for the synthesis of propylene oxide from bio-glycerol derivated propylene glycol . Chem. Commun. , 2009 . 26 3934 -3936. .
Mahmoud, E.; Watson, D. A.; Lobo, R. F. . Renewable production of phthalic anhydride from biomass-derived furan and maleic anhydride . Green Chem. , 2013 . 16 167 -175. .
Robert, C.; de Montigny, F.; Thomas, C. M. . Tandem synthesis of alternating polyesters from renewable resources . Nat. Commun. , 2011 . 2 586 DOI:10.1038/ncomms1596http://doi.org/10.1038/ncomms1596 .
Winkler, M.; Romain, C.; Meier, M. A. R.; Williams, C. K. . Renewable polycarbonates and polyesters from 1,4-cyclohexadiene . Green Chem. , 2015 . 17 300 -306 . DOI:10.1039/C4GC01353Khttp://doi.org/10.1039/C4GC01353K .
Yu, C. Y.; Chuang, H. J.; Ko, B. T. . Bimetallic bis(benzotriazole iminophenolate) cobalt, nickel and zinc complexes as versatile catalysts for coupling of carbon dioxide with epoxides and copolymerization of phthalic anhydride with cyclohexene oxide . Catal. Sci. Technol. , 2016 . 6 1779 -1791 . DOI:10.1039/C5CY01290Bhttp://doi.org/10.1039/C5CY01290B .
Hosseini, Nejad E.; van, Melis C. G. W.; Vermeer, T. J.; Koning, C. E.; Duchateau, R. . Alternating ring-opening polymerization of cyclohexene oxide and anhydrides: effect of catalyst, cocatalyst, and anhydride structure . Macromolecules , 2012 . 45 1770 -1776 . DOI:10.1021/ma2025804http://doi.org/10.1021/ma2025804 .
Nejad, E. H.; Paoniasari, A.; Koning, C. E.; Duchateau, R. . Semi-aromatic polyesters by alternating ring-opening copolymerisation of styrene oxide and anhydrides . Polym. Chem. , 2012 . 3 1308 -1313 . DOI:10.1039/c2py20026khttp://doi.org/10.1039/c2py20026k .
Li, J.; Liu, Y.; Ren, W. M.; Lu, X. B. . Asymmetric alternating copolymerization of meso-epoxides and cyclic anhydrides: efficient access to enantiopure polyesters . J. Am. Chem. Soc. , 2016 . 138 11493 -11496 . DOI:10.1021/jacs.6b07520http://doi.org/10.1021/jacs.6b07520 .
Sanford, M. J.; Peña Carrodeguas, L.; van Zee, N. J.; Kleij, A. W.; Coates, G. W. . Alternating copolymerization of propylene oxide and cyclohexene oxide with tricyclic anhydrides: access to partially renewable aliphatic polyesters with high glass transition temperatures . Macromolecules , 2016 . 49 6394 -6400 . DOI:10.1021/acs.macromol.6b01425http://doi.org/10.1021/acs.macromol.6b01425 .
Huijser, S.; HosseiniNejad, E.; Sablong, R.; de Jong, C.; Koning, C. E.; Duchateau, R. . Ring-opening co- and terpolymerization of an alicyclic oxirane with carboxylic acid anhydrides and CO2 in the presence of chromium porphyrinato and salen catalysts . Macromolecules , 2011 . 44 1132 -1139 . DOI:10.1021/ma102238uhttp://doi.org/10.1021/ma102238u .
DiCiccio, A. M.; Coates, G. W. . Ring-opening copolymerization of maleic anhydride with epoxides: a chain-growth approach to unsaturated polyesters . J. Am. Chem. Soc. , 2011 . 133 10724 -10727 . DOI:10.1021/ja203520phttp://doi.org/10.1021/ja203520p .
van Zee, N. J.; Sanford, M. J.; Coates, G. W. . Electronic effects of aluminum complexes in the copolymerization of propylene oxide with tricyclic anhydrides: access to well-defined, functionalizable aliphatic polyesters . J. Am. Chem. Soc. , 2016 . 138 2755 -2761 . DOI:10.1021/jacs.5b12888http://doi.org/10.1021/jacs.5b12888 .
Zhang, D.; Boopathi, S. K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. . Metal-free alternating copolymerization of CO2 with epoxides: fulfilling "green" synthesis and activity . J. Am. Chem. Soc. , 2016 . 138 11117 -20 . DOI:10.1021/jacs.6b06679http://doi.org/10.1021/jacs.6b06679 .
Zhu, Y.; Mao, Z.; Gao, C. . Aminolysis-based surface modification of polyesters for biomedical applications . RSC Adv. , 2013 . 3 2509 -2519 . DOI:10.1039/C2RA22358Ahttp://doi.org/10.1039/C2RA22358A .
Ji, H. Y.; Wang, B.; Pan, L.; Li, Y. S. . Lewis pairs for ring-opening alternating copolymerization of cyclic anhydrides and epoxides . Green Chem. , 2018 . 20 641 -648 . DOI:10.1039/C7GC03261Ghttp://doi.org/10.1039/C7GC03261G .
Hu, L. F.; Zhang, C. J.; Wu, H. L.; Yang, J. L.; Liu, B.; Duan, H. Y.; Zhang, X. H. . Highly active organic lewis pairs for the copolymerization of epoxides with cyclic anhydrides: metal-free access to well-defined aliphatic polyesters . Macromolecules , 2018 . 51 3126 -3134 . DOI:10.1021/acs.macromol.8b00499http://doi.org/10.1021/acs.macromol.8b00499 .
Hošťálek, Z.; Trhlíková, O.; Walterová, Z.; Martinez, T.; Peruch, F.; Cramail, H.; Merna, J. . Alternating copolymerization of epoxides with anhydrides initiated by organic bases . Eur. Polym. J. , 2017 . 88 433 -447 . DOI:10.1016/j.eurpolymj.2017.01.002http://doi.org/10.1016/j.eurpolymj.2017.01.002 .
Kameyama, A.; Ueda, K.; Kudo, H.; Nishikubo, T. . The first synthesis of alternating copolymers of oxetanes with cyclic carboxylic anhydrides using quaternary onium salts . Macromolecules , 2002 . 35 3792 -3794 . DOI:10.1021/ma020106+http://doi.org/10.1021/ma020106+ .
Li, H.; Zhao, J.; Zhang, G. . Self-buffering organocatalysis tailoring alternating polyester . ACS Macro Lett. , 2017 . 6 1094 -1098 . DOI:10.1021/acsmacrolett.7b00654http://doi.org/10.1021/acsmacrolett.7b00654 .
Li, H.; Luo, H.; Zhao, J.; Zhang, G. . Well-defined and structurally diverse aromatic alternating polyesters synthesized by simple phosphazene catalysis . Macromolecules , 2018 . 51 2247 -2257 . DOI:10.1021/acs.macromol.8b00159http://doi.org/10.1021/acs.macromol.8b00159 .
Ji, H.; Chen, X.; Wang, B.; Pan, L.; Li, Y. . Metal-free, regioselective and stereoregular alternating copolymerization of monosubstituted epoxides and tricyclic anhydrides . Green Chem. , 2018 . 20 3963 -3973 . DOI:10.1039/C8GC01641Khttp://doi.org/10.1039/C8GC01641K .
Lin, L.; Liang, J.; Xu, Y.; Wang, S.; Xiao, M.; Sun, L.; Meng, Y. . Fully alternating sustainable polyesters from epoxides and cyclic anhydrides: economical and metal-free dual catalysis . Green Chem. , 2019 . 21 2469 -2477 . DOI:10.1039/C9GC00432Ghttp://doi.org/10.1039/C9GC00432G .
Zhou, Y.; Duan, R.; Li, X.; Pang, X.; Wang, X.; Chen, X. . Preparation and thermal properties of polycarbonates/esters catalyzed by using dinuclear Salph-Al from ring-opening polymerization of epoxide monomers . Chem. Asian J. , 2017 . 12 3135 -3140 . DOI:10.1002/asia.201701048http://doi.org/10.1002/asia.201701048 .
Bryan, E.; Ray, S. Polymers--A property database. 2nd Edition. Taylor & Franci: New York, 2000.
James E. Mark. Polymer data handbook. 2nd Ed. Oxford University Press: Oxford/New York, 2009.
Cheng, S.; Khan, B.; Khan, F.; Rabnawaz, M. . Synthesis of high molecular weight polyester using in situ drying method and assessment of water vapor and oxygen barrier properties . Polymers , 2018 . 10 1113 DOI:10.3390/polym10101113http://doi.org/10.3390/polym10101113 .
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构