a.Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang 621999, China
b.National Synchrotron Radiation Lab, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei 230026, China
c.College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
guangaisun_80@163.com (G.A.S)
dongliu10@mail.ustc.edu.cn (D.L.)
Scan for full text
Li-Zhao Huang, Yue Shui, Wei Chen, 等. How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study[J]. Chinese Journal of Polymer Science, 2021,39(3):365-376.
Li-Zhao Huang, Yue Shui, Wei Chen, et al. How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study[J]. Chinese Journal of Polymer Science, 2021,39(3):365-376.
Li-Zhao Huang, Yue Shui, Wei Chen, 等. How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study[J]. Chinese Journal of Polymer Science, 2021,39(3):365-376. DOI: 10.1007/s10118-020-2485-8.
Li-Zhao Huang, Yue Shui, Wei Chen, et al. How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study[J]. Chinese Journal of Polymer Science, 2021,39(3):365-376. DOI: 10.1007/s10118-020-2485-8.
The correlation between aggregates and bound rubber structures in silicone rubbers (S(phr)) with various silica fractions (,Φ,Si,) has been investigated by contrast matching small-angle neutron scattering (SANS), swelling kinetics, and low-field nuclear magnetic resonance (NMR). Mixed solvents with deuterated cyclohexane fractions of 4.9% and 53.7% were chosen to match the scattering length densities of the matrix (S,MP,(phr)) and the filler (S,MS,(phr)), respectively. All the data consistently suggest that: (i) There is a critical threshold ,Φ,Si,c, between 10 and 30 phr; below ,Φ,Si,c, the isolated aggregates are dominant, while beyond ,Φ,Si,c, some rubber fraction is trapped among the agglomerate; (ii) ,Φ,Si,-independent thicknesses around 7.5 nm (NMR) and 8.6 nm (SANS) suggest that the bound rubber formation is determined by inherent properties of the components, and the power-law around 4.2 suggests an exponential changed gradient density of the bound rubber; (iii) S,MS,(80) presents a bicontinuous bound rubber with three characteristic lengths of 41, 100, and 234 nm. The expanded correlation length, a 20 nm smaller aggregate sizes suggest that such existent bicontinuous network in dry samples with less ,Φ,Si, is kind of impacted by swelling. With the obtained bound rubber models, the reinforcing mechanism of filled silicone rubber is elucidated.
Silicone rubberBound rubber structuresSmall-angle neutron scattering (SANS)Nuclear magnetic resonance (NMR)
Chen, L.; Lu, L.; Wu, D.; Chen, G. . Silicone rubber/graphite nanosheet electrically conducting nanocomposite with a low percolation threshold . Compos. Polym. , 2007 . 28 493 -498 . DOI:10.1002/pc.20323http://doi.org/10.1002/pc.20323 .
Hanu, L.; Simon, G.; Cheng, Y. . Preferential orientation of muscovite in ceramifiable silicone composites . Mater. Sci. Eng. A , 2005 . 398 180 -187 . DOI:10.1016/j.msea.2005.03.022http://doi.org/10.1016/j.msea.2005.03.022 .
Genovese, A.; Shanks, R. A. . Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry . Compos. Part A , 2008 . 39 398 -405 . DOI:10.1016/j.compositesa.2007.09.009http://doi.org/10.1016/j.compositesa.2007.09.009 .
Yang, B.; Zhang, S. H.; Zou, Y. F.; Ma, W. S.; Huang, G. J.; Li, M. D. . Improving the thermal conductivity and mechanical properties of two-component room temperature vulcanized silicone rubber by filling with hydrophobically modified SiO2-graphene nanohybrids . Chinese J. Polym. Sci. , 2019 . 37 189 -196 . DOI:10.1007/s10118-019-2185-4http://doi.org/10.1007/s10118-019-2185-4 .
Imamura, W.; Usuda, É. O.; Paixão, L. S.; Bom, N. M.; Gomes, A. M.; Carvalho, A. M. G. . Supergiant barocaloric effects in acetoxy silicone rubber over a wide temperature range: great potential for solid-state cooling . Chinese J. Polym. Sci. , 2020 . DOI:10.1007/s10118-020-2423-9http://doi.org/10.1007/s10118-020-2423-9 .
Shinohara, Y.; Kishimoto, H.; Yagi, N.; Amemiya, Y. . Microscopic observation of aging of silica particles in unvulcanized rubber . Macromolecules , 2010 . 43 9480 -9487 . DOI:10.1021/ma102095bhttp://doi.org/10.1021/ma102095b .
Levresse, P.; Feke, D. L.; Manas-Zloczower, I. . Analysis of the formation of bound poly(dimethylsiloxane) on silica . Polymer , 1998 . 39 3919 -3924 . DOI:10.1016/S0032-3861(97)10194-Xhttp://doi.org/10.1016/S0032-3861(97)10194-X .
Litvinov, V. M.; Orza, R. A.; Kluüppel, M.; van Duin, M.; Magusin, P. C. M. M. . Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM . Macromolecules , 2011 . 44 4887 -4900 . DOI:10.1021/ma2007255http://doi.org/10.1021/ma2007255 .
Kohls, D. J.; Beaucage, G. . Rational design of reinforced rubber . Curr. Opin. Solid State Mater. Sci. , 2002 . 6 183 -194 . DOI:10.1016/S1359-0286(02)00073-6http://doi.org/10.1016/S1359-0286(02)00073-6 .
Wang, M. . Effect of polymer-filler and filler-filler reciprocity to dynamic mechanics performance of filling-vulcanization rubber . Rubber Chem. Technol. , 1998 . 71 520 -589 . DOI:10.5254/1.3538492http://doi.org/10.5254/1.3538492 .
Li, Y.; Ren, M.; Lv, P.; Liu, Y.; Shao, H.; Wang, C.; Tang, C.; Zhou, Y.; Shuai, M. . A robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol-ene photopolymerization . J. Mater. Chem. A , 2019 . 7 7242 -7255 . DOI:10.1039/C8TA11111Ahttp://doi.org/10.1039/C8TA11111A .
Song, L.; Wang, Z.; Tang, X.; Chen, L.; Chen, P.; Yuan, Q.; Li, L. . Visualizing the toughening mechanism of nanofiller with 3D X-ray nano-CT: stress-induced phase separation of silica nanofiller and silicone polymer double networks . Macromolecules , 2017 . 50 7249 -7257 . DOI:10.1021/acs.macromol.7b00539http://doi.org/10.1021/acs.macromol.7b00539 .
Wei, C. S.; Lu, A.; Sun, S. M.; Wei, X. W.; Zhou, X. Y.; Sun, J. . Establishment of constitutive model of silicone rubber foams based on statistical theory of rubber elasticity . Chinese J. Polym. Sci. , 2018 . 36 1077 -1083 . DOI:10.1007/s10118-018-2125-8http://doi.org/10.1007/s10118-018-2125-8 .
Kang, X. W.; Liu, D.; Zhang, P.; Kang, M.; Chen, F.; Yuan, Q. X.; Zhao, X. L.; Song, Y. Z.; Song, L. X. . Revisiting silica networks by small-angle neutron scattering and synchrotron radiation X-ray imaging techniques . Chinese J. Polym. Sci. , 2020 . 38 1006 -1014 . DOI:10.1007/s10118-020-2402-1http://doi.org/10.1007/s10118-020-2402-1 .
Baeza, G. P.; Genix, A. C.; Degrandcourt, C.; Petitjean, L.; Gummel, J.; Couty, M.; Oberdisse, J. . multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM . Macromolecules , 2013 . 46 317 -329 . DOI:10.1021/ma302248phttp://doi.org/10.1021/ma302248p .
Papon, A.; Montes, H.; Lequeux, F.; Oberdisse, J.; Saalwächter, K.; Guy, L. . Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties . Soft Matter , 2012 . 8 4090 -4096 . DOI:10.1039/c2sm06885khttp://doi.org/10.1039/c2sm06885k .
Rishi, K.; Beaucage, G.; Kuppa, V.; Mulderig, A.; Narayanan, V.; McGlasson, A.; Rackaitis, M.; Ilavsky, J. . Impact of an emergent hierarchical filler network on nanocomposite dynamics . Macromolecules , 2018 . 51 7893 -7904 . DOI:10.1021/acs.macromol.8b01510http://doi.org/10.1021/acs.macromol.8b01510 .
Kim, S. Y.; Meyer, H. W.; Saalwächter, K.; Zukoski, C. F. . Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution . Macromolecules , 2012 . 45 4225 -4237 . DOI:10.1021/ma300439khttp://doi.org/10.1021/ma300439k .
Papon, A.; Saalwächter, K.; Schäler, K.; Guy, L.; Lequeux, F.; Montes, H. . Low-field NMR investigations of nanocomposites: polymer dynamics and network effects . Macromolecules , 2011 . 44 913 -922 . DOI:10.1021/ma102486xhttp://doi.org/10.1021/ma102486x .
Papon, A.; Montes, H.; Hanafi, M.; Lequeux, F.; Guy, L.; Saalwächter, K. . Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry . Phys. Rev. Lett. , 2012 . 108 065702 DOI:10.1103/PhysRevLett.108.065702http://doi.org/10.1103/PhysRevLett.108.065702 .
Sawvel, A. M.; Chinn, S. C.; Gee, M.; Loeb, C. K.; Maiti, A.; Mason, H. E.; Maxwell, R. S.; Lewicki, J. P. . Nonideality in silicone network formation via solvent swelling and 1H double-quantum NMR . Macromolecules , 2019 . 52 410 -419 . DOI:10.1021/acs.macromol.8b01939http://doi.org/10.1021/acs.macromol.8b01939 .
Saalwächter, K. . Detection of heterogeneities in dry and swollen polymer networks by proton low-field NMR spectroscopy . J. Am. Chem. Soc. , 2003 . 125 14684 -14685 . DOI:10.1021/ja038278phttp://doi.org/10.1021/ja038278p .
Chassé, W.; Schlögl, S.; Riess, G.; Saalwächter, K. . Inhomogeneities and local chain stretching in partially swollen networks . Soft Matter , 2013 . 9 6943 -6954 . DOI:10.1039/C3SM50195Ghttp://doi.org/10.1039/C3SM50195G .
Chen, W.; Liu, D.; Li, L. . Multiscale characterization of semicrystalline polymeric materials by synchrotron radiation X-ray and neutron scattering . Polym. Crystal. , 2019 . 2 10043 DOI:10.1002/pcr2.10043http://doi.org/10.1002/pcr2.10043 .
Liu, D.; Li, X.; Song, H.; Wang, P.; Chen, J.; Tian, Q.; Sun, L.; Chen, L.; Chen, B.; Gong, J.; Sun, G. . Hierarchical structure of MWCNT reinforced semicrystalline HDPE composites: a contrast matching study by neutron and X-ray scattering . Eur. Polym. J. , 2018 . 99 18 -26 . DOI:10.1016/j.eurpolymj.2017.12.002http://doi.org/10.1016/j.eurpolymj.2017.12.002 .
Li, L. B. . In situ synchrotron radiation techniques: watching deformation-induced structural evolutions of polymers . Chinese J. Polym. Sci. , 2018 . 36 1093 -1102 . DOI:10.1007/s10118-018-2169-9http://doi.org/10.1007/s10118-018-2169-9 .
Liu, H.; Huang, G.; Wei, L.; Zeng, J.; Fu, X.; Huang, C.; Wu, J. . Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber . Chinese J. Polym. Sci. , 2019 . 37 1142 -1151 . DOI:10.1007/s10118-019-2267-3http://doi.org/10.1007/s10118-019-2267-3 .
Yang, H.; Liu, D.; Ju, J.; Li, J.; Wang, Z.; Yan, G.; Ji, Y.; Zhang, W.; Sun, G.; Li, L. . Chain deformation on the formation of shish nuclei under extension flow: an in situ SANS and SAXS study . Macromolecules , 2016 . 49 9080 -9088 . DOI:10.1021/acs.macromol.6b01945http://doi.org/10.1021/acs.macromol.6b01945 .
López-Barrón, C. R.; Zeng, Y.; Schaefer, J. J.; Eberle, A. P.; Lodge, T. P.; Bates, F. S. . Molecular alignment in polyethylene during cold drawing using in-situ SANS and raman spectroscopy . Macromolecules , 2017 . 50 3627 -3636 . DOI:10.1021/acs.macromol.7b00504http://doi.org/10.1021/acs.macromol.7b00504 .
Banc, A.; Genix, A. C.; Dupas, C.; Sztucki, M.; Schweins, R.; Appavou, M. S.; Oberdisse, J. . Origin of small-angle scattering from contrast-matched nanoparticles: a study of chain and filler structure in polymer nanocomposites . Macromolecules , 2015 . 48 6596 -6605 . DOI:10.1021/acs.macromol.5b01424http://doi.org/10.1021/acs.macromol.5b01424 .
Richards, J. J.; Whittle, C. L.; Shao, G.; Pozzo, L. D. . Correlating structure and photocurrent for composite semiconducting nanoparticles with contrast variation small-angle neutron scattering and photoconductive atomic force microscopy . ACS Nano , 2014 . 8 4313 -4324 . DOI:10.1021/nn405914ghttp://doi.org/10.1021/nn405914g .
Wang, T.; Tian, N.; Chen, J.; Huang, L.; Sun, G.; Gong, J.; Liu, D. . Revisiting flow-induced crystallization of polyethylene inversely: an in situ swelling SANS study . Polymer , 2019 . 184 121934 DOI:10.1016/j.polymer.2019.121934http://doi.org/10.1016/j.polymer.2019.121934 .
Sonntag, M.; Jagtap, P. K. A.; Simon, B.; Appavou, M. S.; Geerlof, A.; Stehle, R.; Gabel, F.; Hennig, J.; Sattler, M. . domain-selective perdeuteration and small-angle neutron scattering for structural analysis of multi-domain proteins . Angew. Chem. Int. Ed. , 2017 . 56 9322 -9325 . DOI:10.1002/anie.201702904http://doi.org/10.1002/anie.201702904 .
Liu, D.; Chen, J.; Song, L.; Lu, A.; Wang, Y.; Sun, G. . Parameterization of silica-filled silicone rubber morphology: a contrast variation SANS and TEM study . Polymer , 2017 . 120 155 -163 . DOI:10.1016/j.polymer.2017.05.064http://doi.org/10.1016/j.polymer.2017.05.064 .
Liu, D.; Song, L.; Song, H.; Chen, J.; Tian, Q.; Chen, L.; Sun, L.; Lu, A.; Huang, C.; Sun, G. . Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber . Compos. Sci. Technol. , 2018 . 165 373 -379 . DOI:10.1016/j.compscitech.2018.07.024http://doi.org/10.1016/j.compscitech.2018.07.024 .
Peng, M.; Sun, L.; Chen, L.; Sun, G.; Chen, B.; Xie, C.; Xia, Q.; Yan, G.; Tian, Q.; Huang, C. . A new small-angle neutron scattering spectrometer at china mianyang research reactor . Nucl. Instrum. Methods Phys. Res., Sect. A , 2016 . 810 63 -67 . DOI:10.1016/j.nima.2015.11.141http://doi.org/10.1016/j.nima.2015.11.141 .
Chen, L.; Sun, L.; Tian, Q.; Wang, T.; Chen, J.; Sun, G.; Huang, C.; Liu, D. . Upgrade of a small-angle neutron scattering spectrometer suanni of China Mianyang research reactor . J. Instrum. , 2018 . 13 P08025 DOI:10.1088/1748-0221/13/08/P08025http://doi.org/10.1088/1748-0221/13/08/P08025 .
Tian, Q.; Yan, G.; Bai, L.; Chen, J.; Liu, D.; Chen, L.; Sun, L.; Huang, C.; Chen, B.; Nagy, G. . Calibration of the suanni small-angle neutron scattering instrument at the China Mianyang research reactor . J. Appl. Crystallogr. , 2018 . 51 1662 -1670 . DOI:10.1107/S1600576718015285http://doi.org/10.1107/S1600576718015285 .
Ehrburgerdolle, F.; Hindermannbischoff, M.; Livet, F.; Bley, F.; Rochas, A. C.; Geissler, E. . Anisotropic ultra-small-angle X-ray scattering in carbon black filled polymers . Langmuir , 2001 . 17 329 -334 . DOI:10.1021/la001184yhttp://doi.org/10.1021/la001184y .
Schmidt, P. W. . Small-angle scattering studies of disordered, porous and fractal systems . J. Appl. Crystallogr. , 1991 . 24 414 -435 . DOI:10.1107/S0021889891003400http://doi.org/10.1107/S0021889891003400 .
Beaucage, G.; Schaefer, D. W. . Structural studies of complex systems using small-angle scattering: a unified guinier/power-law approach . J. Non-Cryst. Solids , 1994 . 172 797 -805. .
Ruland, W. . Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod's law . J. Appl. Crystallogr. , 1971 . 4 70 -73. .
Schmidt, P. W.; Avnir, D.; Levy, D.; Höhr, A.; Steiner, M.; Röll, A. . small-angle X-ray scattering from the surfaces of reversed-phase silicas: power-law scattering exponents of magnitudes greater than four . J. Chem. Phys. , 1991 . 94 1474 -1479 . DOI:10.1063/1.460006http://doi.org/10.1063/1.460006 .
Mujtaba, A.; Keller, M.; Ilisch, S.; Radusch, H. J.; Beiner, M.; Thurn-Albrecht, T.; Saalwächter, K. . Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber-silica nanocomposites . ACS Macro Lett. , 2014 . 3 481 -485 . DOI:10.1021/mz500192rhttp://doi.org/10.1021/mz500192r .
Golitsyn, Y.; Schneider, G. J.; Saalwachter, K. . Reduced-mobility layers with high internal mobility in poly(ethylene oxide)-silica nanocomposites . J. Chem. Phys. , 2017 . 146 203303 DOI:10.1063/1.4974768http://doi.org/10.1063/1.4974768 .
Oh, S. M.; Abbasi, M.; Shin, T. J.; Saalwachter, K.; Kim, S. Y. . Initial solvent-driven nonequilibrium effect on structure, properties, and dynamics of polymer nanocomposites . Phys. Rev. Lett. , 2019 . 123 167801 .
Chassé, W.; Lang, M.; Sommer, J. U.; Saalwächter, K. . Cross-link density estimation of PDMS networks with precise consideration of networks defects . Macromolecules , 2012 . 45 899 -912 . DOI:10.1021/ma202030zhttp://doi.org/10.1021/ma202030z .
Valentín, J. L.; Posadas, P.; Fernández-Torres, A.; Malmierca, M. A.; González, L.; Chassé, W.; Saalwächter, K. . Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems . Macromolecules , 2010 . 43 4210 -4222 . DOI:10.1021/ma1003437http://doi.org/10.1021/ma1003437 .
Mordvinkin, A.; Saalwächter, K. . Microscopic observation of the segmental orientation autocorrelation function for entangled and constrained polymer chains . J. Chem. Phys. , 2017 . 146 094902 DOI:10.1063/1.4977041http://doi.org/10.1063/1.4977041 .
Chassé, W.; Valentín, J. L.; Genesky, G. D.; Cohen, C.; Saalwächter, K. . Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers . J. Chem. Phys. , 2011 . 134 044907 DOI:10.1063/1.3534856http://doi.org/10.1063/1.3534856 .
Schneider, G. J.; Vollnhals, V.; Brandt, K.; Roth, S. V.; Göritz, D. . Correlation of mass fractal dimension and cluster size of silica in styrene butadiene rubber composites . J. Chem. Phys. , 2010 . 133 094902 DOI:10.1063/1.3469827http://doi.org/10.1063/1.3469827 .
Kato, A.; Ikeda, Y.; Kasahara, Y.; Shimanuki, J.; Suda, T.; Hasegawa, T.; Sawabe, H.; Kohjiya, S. . Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques . J. Opt. Soc. Am. B , 2008 . 25 1602 -1615 . DOI:10.1364/JOSAB.25.001602http://doi.org/10.1364/JOSAB.25.001602 .
0
浏览量
4
Downloads
1
CSCD
关联资源
相关文章
相关作者
相关机构