1.Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
kezuomin@zju.edu.cn
Scan for full text
An Zhao, Xuan-Yu Shi, Shi-Hao Sun, 等. Insights into the Payne Effect of Carbon Black Filled Styrene-butadiene Rubber Compounds[J]. Chinese Journal of Polymer Science, 2021,39(1):81-90.
An Zhao, Xuan-Yu Shi, Shi-Hao Sun, et al. Insights into the Payne Effect of Carbon Black Filled Styrene-butadiene Rubber Compounds[J]. Chinese Journal of Polymer Science, 2021,39(1):81-90.
An Zhao, Xuan-Yu Shi, Shi-Hao Sun, 等. Insights into the Payne Effect of Carbon Black Filled Styrene-butadiene Rubber Compounds[J]. Chinese Journal of Polymer Science, 2021,39(1):81-90. DOI: 10.1007/s10118-020-2462-2.
An Zhao, Xuan-Yu Shi, Shi-Hao Sun, et al. Insights into the Payne Effect of Carbon Black Filled Styrene-butadiene Rubber Compounds[J]. Chinese Journal of Polymer Science, 2021,39(1):81-90. DOI: 10.1007/s10118-020-2462-2.
As a widely used reinforcing filler of rubber, carbon black (CB) often enhances the nonlinear Payne effect and its mechanism still remains controversial. We adopt simultaneous measurement of rheological and electrical behaviors for styrene-butadiene rubber (SBR)/CB compounds and CB gel (CBG) during large deformation/recovery to investigate the contribution of conductive CB network evolution to the Payne effect of the compounds. In the highly filled compounds, the frequency dependence of their strain softening behavior is much more remarkable than that of their CB network breakdown during loading, while during unloading the unrecoverable filler network hardly affects the complete recovery of modulus, both revealing that their Payne effect should be dominated by the disentanglement of SBR matrix. Furthermore, the bound rubber adjacent to CB particles can accelerate the reconstruction of continuous CB network and improve the reversibility of Payne effect. This may provide new insights into the effect of filler network, bound rubber, and free rubber on the Payne effect of CB filled SBR compounds.
Payne effectStyrene-butadiene rubberFiller network
Song, Y.; Zheng, Q. . Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics . Prog. Mater. Sci. , 2016 . 84 1 -58 . DOI:10.1016/j.pmatsci.2016.09.002http://doi.org/10.1016/j.pmatsci.2016.09.002 .
Montes, H.; Lequeux, F.; Berriot, J. . Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers . Macromolecules , 2003 . 36 8107 -8118 . DOI:10.1021/ma0344590http://doi.org/10.1021/ma0344590 .
Litvinov, V. M.; Orza, R. A.; Klüppel, M.; van Duin, M.; Magusin, P. C. M. M. . Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM . Macromolecules , 2011 . 44 4887 -4900 . DOI:10.1021/ma2007255http://doi.org/10.1021/ma2007255 .
Kohjiya, S.; Katoh, A.; Suda, T.; Shimanuki, J.; Ikeda, Y. . Visualisation of carbon black networks in rubbery matrix by skeletonisation of 3D-TEM image . Polymer , 2006 . 47 3298 -3301 . DOI:10.1016/j.polymer.2006.03.008http://doi.org/10.1016/j.polymer.2006.03.008 .
Kohjiya, S.; Kato, A.; Ikeda, Y. . Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix . Prog. Polym. Sci. , 2008 . 33 979 -997 . DOI:10.1016/j.progpolymsci.2008.06.001http://doi.org/10.1016/j.progpolymsci.2008.06.001 .
Zhu, Z.; Thompson, T.; Wang, S. Q.; von Meerwall, E. D.; Halasa, A. . Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene . Macromolecules , 2005 . 38 8816 -8824 . DOI:10.1021/ma050922shttp://doi.org/10.1021/ma050922s .
Robertson, C. G.; Roland, C. M. . Glass transition and interfacial segmental dynamics in polymer-particle composites . Rubber Chem. Technol. , 2008 . 81 506 -522 . DOI:10.5254/1.3548217http://doi.org/10.5254/1.3548217 .
Shang, S. W.; Williams, J. W.; Söderholm, K. J. M. . Work of adhesion influence on the rheological properties of silica filled polymer composites . J. Mater. Sci. , 1995 . 30 4323 -4334 . DOI:10.1007/BF00361512http://doi.org/10.1007/BF00361512 .
Payne, A. R. . Effect of dispersion on the dynamic properties of filler-loaded rubbers . J. Appl. Polym. Sci. , 1965 . 9 2273 -2284 . DOI:10.1002/app.1965.070090619http://doi.org/10.1002/app.1965.070090619 .
Payne, A. R. . The dynamic properties of carbon black-loaded natural rubber vulcanizates Part I . J. Appl. Polym. Sci. , 1962 . 6 57 -63 . DOI:10.1002/app.1962.070061906http://doi.org/10.1002/app.1962.070061906 .
Meera, A. P.; Said, S.; Grohens, Y.; Thomas, S. . Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites . J. Phys. Chem. C , 2009 . 113 17997 -18002 . DOI:10.1021/jp9020118http://doi.org/10.1021/jp9020118 .
Yang, J.; Han, C. . Dynamics of silica-nanoparticle-filled hybrid hydrogels: nonlinear viscoelastic behavior and chain entanglement network . J. Phys. Chem. C , 2013 . 117 20236 -20243 . DOI:10.1021/jp404616shttp://doi.org/10.1021/jp404616s .
Sternstein, S. S.; Zhu, A. . Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior . Macromolecules , 2002 . 35 7262 -7273 . DOI:10.1021/ma020482uhttp://doi.org/10.1021/ma020482u .
Sarvestani, A. S. . On the emergence of the Payne effect in polymer melts reinforced with nanoparticles . Macromol. Theory Simul. , 2016 . 25 312 -321 . DOI:10.1002/mats.201600001http://doi.org/10.1002/mats.201600001 .
Sun, J.; Song, Y.; Zheng, Q.; Tan, H.; Yu, J.; Li, H. . Nonlinear rheological behavior of silica filled solution-polymerized styrene butadiene rubber . J. Polym. Sci., Part B: Polym. Phys. , 2007 . 45 2594 -2602 . DOI:10.1002/polb.21263http://doi.org/10.1002/polb.21263 .
Song, Y.; Zeng, L.; Zheng, Q. . Reconsideration of the rheology of silica filled natural rubber compounds . J. Phys. Chem. B , 2017 . 121 5867 -5875 . DOI:10.1021/acs.jpcb.7b02760http://doi.org/10.1021/acs.jpcb.7b02760 .
van de Walle, A.; Tricot, C.; Gerspacher, M. . Modeling carbon black reinforcement in rubber compounds . Kautsch. Gummi Kunstst. , 1996 . 49 172 -179. .
Harwood, J. A. C.; Mullins, L.; Payne, A. R. . Tensile stress softening effects in pure gum and filler loaded vulcanizates . J. Polym. Sci., Part B: Polym. Lett. , 1965 . 3 119 -122 . DOI:10.1002/pol.1965.110030208http://doi.org/10.1002/pol.1965.110030208 .
Gusev, A. A. . Micromechanical mechanism of reinforcement and losses in filled rubbers . Macromolecules , 2006 . 39 5960 -5962 . DOI:10.1021/ma061308zhttp://doi.org/10.1021/ma061308z .
Song, Y.; Zeng, L.; Zheng, Q. . Understanding the reinforcement and dissipation of natural rubber compounds filled with hybrid filler composed of carbon black and silica . Chinese J. Polym. Sci. , 2017 . 35 1436 -1446 . DOI:10.1007/s10118-017-1987-5http://doi.org/10.1007/s10118-017-1987-5 .
He, X.; Shi, X.; Hoch, M.; Gögelein, C. . Mechanical properties of carbon black filled hydrogenated acrylonitrile butadiene rubber for packer compounds . Polym. Test. , 2016 . 53 257 -266 . DOI:10.1016/j.polymertesting.2016.06.009http://doi.org/10.1016/j.polymertesting.2016.06.009 .
Fan, X.; Xu, H.; Zhang, Q.; Xiao, D.; Song, Y.; Zheng, Q. . Insight into the weak strain overshoot of carbon black filled natural rubber . Polymer , 2019 . 167 109 -117 . DOI:10.1016/j.polymer.2019.01.076http://doi.org/10.1016/j.polymer.2019.01.076 .
Xu, H.; Xia, X.; Hussain, M.; Song, Y.; Zheng, Q. . Linear and nonlinear rheological behaviors of silica filled nitrile butadiene rubber . Polymer , 2018 . 156 222 -227 . DOI:10.1016/j.polymer.2018.10.014http://doi.org/10.1016/j.polymer.2018.10.014 .
Song, Y.; Yang, R.; Du, M.; Shi, X.; Zheng, Q. . Rigid nanoparticles promote the softening of rubber phase in filled vulcanizates . Polymer , 2019 . 177 131 -138 . DOI:10.1016/j.polymer.2019.06.003http://doi.org/10.1016/j.polymer.2019.06.003 .
Gan, S.; Wu, Z. L.; Xu, H.; Song, Y.; Zheng, Q. . Viscoelastic behaviors of carbon black gel extracted from highly filled natural rubber compounds: insights into the Payne effect . Macromolecules , 2016 . 49 1454 -1463 . DOI:10.1021/acs.macromol.5b02701http://doi.org/10.1021/acs.macromol.5b02701 .
Cao, Q.; Song, Y.; Tan, Y.; Zheng, Q. . Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing . Carbon , 2010 . 4268 -4275. .
Liu, Z.; Song, Y.; Shangguan, Y.; Zheng, Q. . Simultaneous measurement of normal force and electrical resistance during isothermal crystallization for carbon black filled high-density polyethylene . J. Mater. Sci. , 2008 . 43 4828 -4833 . DOI:10.1007/s10853-008-2697-8http://doi.org/10.1007/s10853-008-2697-8 .
Li, H.; Zuo, M.; Liu, T.; Chen, Q.; Zhang, J.; Zheng, Q. . Effect of multi-walled carbon nanotubes on the morphology evolution, conductivity and rheological behaviors of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends during isothermal annealing . RSC Adv. , 2016 . 6 10099 -10113 . DOI:10.1039/C5RA23002Khttp://doi.org/10.1039/C5RA23002K .
Xu, Z.; Song, Y.; Zheng, Q. . Payne effect of carbon black filled natural rubber compounds and their carbon black gels . Polymer , 2019 . 185 121953 DOI:10.1016/j.polymer.2019.121953http://doi.org/10.1016/j.polymer.2019.121953 .
Bogoslovov, R. B.; Roland, C. M.; Ellis, A. R.; Randall, A. M.; Robertson, C. G. . Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate) . Macromolecules , 2008 . 41 1289 -1296 . DOI:10.1021/ma702372ahttp://doi.org/10.1021/ma702372a .
Sargsyan, A.; Tonoyan, A.; Davtyan, S.; Schick, C. . The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data . Eur. Polym. J. , 2007 . 43 3113 -3127 . DOI:10.1016/j.eurpolymj.2007.05.011http://doi.org/10.1016/j.eurpolymj.2007.05.011 .
Litvinov, V. M.; Steeman, P. A. M. . EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H-NMR . Macromolecules , 1999 . 32 8476 -8490 . DOI:10.1021/ma9910080http://doi.org/10.1021/ma9910080 .
Filippone, G.; de Luna, M. S. . A unifying approach for the linear viscoelasticity of polymer nanocomposites . Macromolecules , 2012 . 45 8853 -8860 . DOI:10.1021/ma301594ghttp://doi.org/10.1021/ma301594g .
Song, Y.; Zheng, Q. . Linear viscoelasticity of polymer melts filled with nano-sized fillers . Polymer , 2010 . 51 3262 -3268 . DOI:10.1016/j.polymer.2010.05.018http://doi.org/10.1016/j.polymer.2010.05.018 .
Zhang, Q.; Wu, C.; Song, Y.; Zheng, Q. . Rheology of fumed silica/polypropylene glycol dispersions . Polymer , 2018 . 148 400 -406 . DOI:10.1016/j.polymer.2018.06.051http://doi.org/10.1016/j.polymer.2018.06.051 .
Song, Y.; Zheng, Q.; Cao, Q. . On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers . J. Rheol. , 2009 . 53 1379 -1388 . DOI:10.1122/1.3216923http://doi.org/10.1122/1.3216923 .
Williams, M. L.; Landel, R. F.; Ferry, J. D. . The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids . J. Am. Chem. Soc. , 1955 . 77 3701 -3707 . DOI:10.1021/ja01619a008http://doi.org/10.1021/ja01619a008 .
Klüppel, M. . Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics . J. Phys.: Condens. Matter , 2008 . 21 035104 .
Pine, D. J.; Gollub, J. P.; Brady, J. F.; Leshansky, A. M. . Chaos and threshold for irreversibility in sheared suspensions . Nature , 2005 . 438 997 -1000 . DOI:10.1038/nature04380http://doi.org/10.1038/nature04380 .
Kluppel, M. . The role of disorder in filler reinforcement of elastomers on various length scales . Adv. Polym. Sci. , 2003 . 164 1 -86. .
Hyun, K.; Wilhelm, M.; Klein, C. O.; Cho, K. S.; Nam, J. G.; Ahn, K. H.; Lee, S. J.; Ewoldt, R. H.; McKinley, G. H. . A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS) . Prog. Polym. Sci. , 2011 . 36 1697 -1753 . DOI:10.1016/j.progpolymsci.2011.02.002http://doi.org/10.1016/j.progpolymsci.2011.02.002 .
Hyun, K.; Nam, J. G.; Wilhelm, M.; Ahn, K. H.; Lee, S. J. . Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow . Korean J. Rheol. J. , 2011 . 23 227 -235 . DOI:10.1007/s13367-011-0028-0http://doi.org/10.1007/s13367-011-0028-0 .
Vermant, J.; Ceccia, S.; Dolgovskij, M. K.; Maffettone, P. L.; Macosko, C. W. . Quantifying dispersion of layered nanocomposites via melt rheology . J. Rheol. , 2007 . 15 97 -105. .
Satoh, Y.; Fujii, S.; Kawahara, S.; Isono, Y.; Kagami, S. . Differential dynamic modulus of carbon black filled, uncured SBR in single-step large shearing deformations . Soft Matter , 2007 . 3 29 -40 . DOI:10.2324/ejsm.3.29http://doi.org/10.2324/ejsm.3.29 .
0
浏览量
4
Downloads
1
CSCD
关联资源
相关文章
相关作者
相关机构