a.College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
b.Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
c.Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, China
caijie@whu.edu.cn
Scan for full text
Yi Zhong, Jie Cai, Li-Na Zhang. A Review of Chitin Solvents and Their Dissolution Mechanisms[J]. Chinese Journal of Polymer Science, 2020,38(10):1047-1060.
Yi Zhong, Jie Cai, Li-Na Zhang. A Review of Chitin Solvents and Their Dissolution Mechanisms[J]. Chinese Journal of Polymer Science, 2020,38(10):1047-1060.
Yi Zhong, Jie Cai, Li-Na Zhang. A Review of Chitin Solvents and Their Dissolution Mechanisms[J]. Chinese Journal of Polymer Science, 2020,38(10):1047-1060. DOI: 10.1007/s10118-020-2459-x.
Yi Zhong, Jie Cai, Li-Na Zhang. A Review of Chitin Solvents and Their Dissolution Mechanisms[J]. Chinese Journal of Polymer Science, 2020,38(10):1047-1060. DOI: 10.1007/s10118-020-2459-x.
Chitin is an abundant natural nitrogen-containing biopolymer with great application potential in materials, environment, energy, and health. However, the structure characteristics and processing technologies have required intense research in related applications. In particular, there have been great efforts to developing solvents for chitin, and the results so far are quite encouraging. This review summarizes the main solvent systems used for chitin, namely the aqueous solvent systems (mineral acids, inorganic salt aqueous solutions, alkali aqueous solutions) and non-aqueous ones (LiCl-dimethylacetamide solvents, CaCl,2,·2H,2,O saturated methanol, ionic liquids, deep eutectic solvents, and protic organic solvents). The solvent properties, dissolution methods, and solution properties are discussed in detail. Special attention is paid to the dissolution mechanism in each system. This review can provide a reference for understanding the dissolution behavior of chitin and finding suitable solvents for it.
ChitinSolventsDissolution mechanismHydrogen bonding
Kumar, M. N. V. R. . A review of chitin and chitosan applications . React. Funct. Polym. , 2000 . 46 1 -27 . DOI:10.1016/S1381-5148(00)00038-9http://doi.org/10.1016/S1381-5148(00)00038-9 .
Bartlett, D. H.; Azam, F. . Chitin, cholera, and competence . Science , 2005 . 310 1775 DOI:10.1126/science.1122396http://doi.org/10.1126/science.1122396 .
Nawawi, W. M. F. B. W.; Jones, M.; Murphy, R. J.; Lee, K. Y.; Kontturi, E.; Bismarck, A. . Nanomaterials derived from fungal sources-Is it the new type? . Biomacromolecules , 2020 . 21 30 -55 . DOI:10.1021/acs.biomac.9b01141http://doi.org/10.1021/acs.biomac.9b01141 .
Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture (FAO, 2018). 2018, https://apo.org.au/node/181941.
Crini, G. Historical landmarks in the discovery of chitin. In Sustainable agriculture reviews 35: chitin and chitosan: history, fundamentals and innovations, Crini, G.; Lichtfouse, E. Eds. Springer International Publishing, 2019, DOI: 10.1007/978-3-030-16538-3_1.
Rudall, K. M. The chitin/protein complexes of insect cuticles. In Advances in insect physiololy. Beament, J. W. L.; Treherne, J. E.; Wigglesworth, V. B. Eds. Academic Press, 1963, p.1.
Blackwell, J.; Gardner, K. H.; Kolpak, F. J.; Minke, R.; Claffey, W. B. Refinement of cellulose and chitin structures. In Fiber diffraction methods, American Chemical Society, 1980, p.141.
Sikorski, P.; Hori, R.; Wada, M. . Revisit of α-chitin crystal structure using high resolution X-ray diffraction data . Biomacromolecules , 2009 . 10 1100 -1105 . DOI:10.1021/bm801251ehttp://doi.org/10.1021/bm801251e .
Nishiyama, Y.; Noishiki, Y.; Wada, M. . X-ray structure of anhydrous β-chitin at 1Å resolution . Macromolecules , 2011 . 44 950 -957 . DOI:10.1021/ma102240rhttp://doi.org/10.1021/ma102240r .
Sawada, D.; Nishiyama, Y.; Langan, P.; Forsyth, V. T.; Kimura, S.; Wada, M. . Direct determination of the hydrogen bonding arrangement in anhydrous β-chitin by neutron fiber diffraction . Biomacromolecules , 2012 . 13 288 -291 . DOI:10.1021/bm201512thttp://doi.org/10.1021/bm201512t .
Krajewska, B. . Application of chitin- and chitosan-based materials for enzyme immobilizations: a review . Enzyme Microb. Technol. , 2004 . 35 126 -139 . DOI:10.1016/j.enzmictec.2003.12.013http://doi.org/10.1016/j.enzmictec.2003.12.013 .
Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S. V.; Tamura, H. . Biomedical applications of chitin and chitosan based nanomaterials—a short review . Carbohydr. Polym. , 2010 . 82 227 -232 . DOI:10.1016/j.carbpol.2010.04.074http://doi.org/10.1016/j.carbpol.2010.04.074 .
Kadokawa, J. I. . Ionic liquid as useful media for dissolution, derivatization, and nanomaterial processing of chitin . Green Sustain. Chem. , 2013 . 3 19 -25. .
Duan, B.; Huang, Y.; Lu, A.; Zhang, L. . Recent advances in chitin based materials constructed via physical methods . Prog. Polym. Sci. , 2018 . 82 1 -33 . DOI:10.1016/j.progpolymsci.2018.04.001http://doi.org/10.1016/j.progpolymsci.2018.04.001 .
Zavgorodnya, O.; Shamshina, J. L.; Berton, P.; Rogers, R. D. Translational research from academia to industry: following the pathway of George Washington Carver. In Ionic liquids: current state and future directions, American Chemical Society, 2017, p.1250.
Wu, S.; Duan, B.; Zeng, X.; Lu, A.; Xu, X.; Wang, Y.; Ye, Q.; Zhang, L. . Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy . J. Mater. Chem. B , 2017 . 5 2952 -2963 . DOI:10.1039/C7TB00101Khttp://doi.org/10.1039/C7TB00101K .
Shen, X.; Shamshina, J. L.; Berton, P.; Gurau, G.; Rogers, R. D. . Hydrogels based on cellulose and chitin: fabrication, properties, and applications . Green Chem. , 2016 . 18 53 -75 . DOI:10.1039/C5GC02396Chttp://doi.org/10.1039/C5GC02396C .
Shamshina, J. L.; Berton, P.; Rogers, R. D. . Advances in functional chitin materials: a review . ACS Sustain. Chem. Eng. , 2019 . 7 6444 -6457 . DOI:10.1021/acssuschemeng.8b06372http://doi.org/10.1021/acssuschemeng.8b06372 .
Zhang, L.; Wang, J.; Yang, M.; Ke, N.; Zhang, B.; Wang, H.; Zheng, Q.; Xie, H. . Dissolution, materialization and derivatization of chitin and chitosan in ionic liquids . Sci. Sin. Chim. , 2019 . 49 1059 -1072 . DOI:10.1360/SSC-2019-0031http://doi.org/10.1360/SSC-2019-0031 .
Wei, P.; Cai, J.; Zhang, L. . High-strength and tough crystalline polysaccharide-based materials . Chin. J. Chem. , 2020 . DOI: 10.1002/cjoc.202000036 DOI:10.1002/cjoc.202000036http://doi.org/10.1002/cjoc.202000036 .
Marchessault, R. H.; Morehead, F. F.; Walter, N. M. . Liquid crystal systems from fibrillar polysaccharides . Nature , 1959 . 184 632 -633 . DOI:10.1038/184632a0http://doi.org/10.1038/184632a0 .
Fan, Y.; Saito, T.; Isogai, A. . Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin . Biomacromolecules , 2008 . 9 192 -198 . DOI:10.1021/bm700966ghttp://doi.org/10.1021/bm700966g .
Fan, Y.; Saito, T.; Isogai, A. . TEMPO-mediated oxidation of β-chitin to prepare individual nanofibrils . Carbohydr. Polym. , 2009 . 77 832 -838 . DOI:10.1016/j.carbpol.2009.03.008http://doi.org/10.1016/j.carbpol.2009.03.008 .
Fan, Y.; Saito, T.; Isogai, A. . Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization . Carbohydr. Polym. , 2010 . 79 1046 -1051 . DOI:10.1016/j.carbpol.2009.10.044http://doi.org/10.1016/j.carbpol.2009.10.044 .
You, J.; Zhu, L.; Wang, Z.; Zong, L.; Li, M.; Wu, X.; Li, C. . Liquid exfoliated chitin nanofibrils for re-dispersibility and hybridization of two-dimensional nanomaterials . Chem. Eng. J. , 2018 . 344 498 -505 . DOI:10.1016/j.cej.2018.03.121http://doi.org/10.1016/j.cej.2018.03.121 .
Kurita, K. . Controlled functionalization of the polysaccharide chitin . Prog. Polym. Sci. , 2001 . 26 1921 -1971 . DOI:10.1016/S0079-6700(01)00007-7http://doi.org/10.1016/S0079-6700(01)00007-7 .
Zhong, C.; Cooper, A.; Kapetanovic, A.; Fang, Z.; Zhang, M.; Rolandi, M. . A facile bottom-up route to self-assembled biogenic chitin nanofibers . Soft Matter , 2010 . 6 5298 -5301 . DOI:10.1039/c0sm00450bhttp://doi.org/10.1039/c0sm00450b .
You, J.; Li, M.; Ding, B.; Wu, X.; Li, C. . Crab chitin-based 2D soft nanomaterials for fully biobased electric devices . Adv. Mater. , 2017 . 29 1606895 DOI:10.1002/adma.201606895http://doi.org/10.1002/adma.201606895 .
Duan, B.; Chang, C.; Ding, B.; Cai, J.; Xu, M.; Feng, S.; Ren, J.; Shi, X.; Du, Y.; Zhang, L. . High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature . J. Mater. Chem. A , 2013 . 1 1867 -1874 . DOI:10.1039/C2TA00068Ghttp://doi.org/10.1039/C2TA00068G .
King, C.; Shamshina, J. L.; Gurau, G.; Berton, P.; Khan, N. F. A. F.; Rogers, R. D. . A platform for more sustainable chitin films from an ionic liquid process . Green Chem. , 2017 . 19 117 -126 . DOI:10.1039/C6GC02201Dhttp://doi.org/10.1039/C6GC02201D .
Huang, J. C.; Zhong, Y.; Zhang, L. N.; Cai, J. . Extremely strong and transparent chitin films: a high-efficiency, energy-saving, and "green" route using an aqueous KOH/urea solution . Adv. Funct. Mater. , 2017 . 27 1701100 DOI:10.1002/adfm.201701100http://doi.org/10.1002/adfm.201701100 .
Zhu, K.; Shi, S.; Cao, Y.; Lu, A.; Hu, J.; Zhang, L. . Robust chitin films with good biocompatibility and breathable properties . Carbohydr. Polym. , 2019 . 212 361 -367 . DOI:10.1016/j.carbpol.2019.02.054http://doi.org/10.1016/j.carbpol.2019.02.054 .
Huang, Y.; Zhong, Z.; Duan, B.; Zhang, L.; Yang, Z.; Wang, Y.; Ye, Q. . Novel fibers fabricated directly from chitin solution and their application as wound dressing . J. Mater. Chem. B , 2014 . 2 3427 -3432 . DOI:10.1039/c4tb00098fhttp://doi.org/10.1039/c4tb00098f .
Zhu, K.; Tu, H.; Yang, P.; Qiu, C.; Zhang, D.; Lu, A.; Luo, L.; Chen, F.; Liu, X.; Chen, L.; Fu, Q.; Zhang, L. . Mechanically strong chitin fibers with nanofibril structure, biocompatibility, and biodegradability . Chem. Mater. , 2019 . 31 2078 -2087 . DOI:10.1021/acs.chemmater.8b05183http://doi.org/10.1021/acs.chemmater.8b05183 .
Chang, C.; Chen, S.; Zhang, L. . Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility . J. Mater. Chem. , 2011 . 21 3865 -3871 . DOI:10.1039/c0jm03075ahttp://doi.org/10.1039/c0jm03075a .
Xu, D. D.; Huang, J. C.; Zhao, D.; Ding, B. B.; Zhang, L. N.; Cai, J. . High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical cross-linkings . Adv. Mater. , 2016 . 28 5844 -5849 . DOI:10.1002/adma.201600448http://doi.org/10.1002/adma.201600448 .
Duan, B.; Zheng, X.; Xia, Z.; Fan, X.; Guo, L.; Liu, J.; Wang, Y.; Ye, Q.; Zhang, L. . Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers . Angew. Chem. Int. Ed. , 2015 . 54 5152 -5156 . DOI:10.1002/anie.201412129http://doi.org/10.1002/anie.201412129 .
Duan, B.; Gao, X.; Yao, X.; Fang, Y.; Huang, L.; Zhou, J.; Zhang, L. . Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors . Nano Energy , 2016 . 27 482 -491 . DOI:10.1016/j.nanoen.2016.07.034http://doi.org/10.1016/j.nanoen.2016.07.034 .
Duan, B.; Shou, K.; Su, X.; Niu, Y.; Zheng, G.; Huang, Y.; Yu, A.; Zhang, Y.; Xia, H.; Zhang, L. . Hierarchical microspheres constructed from chitin nanofibers penetrated hydroxyapatite crystals for bone regeneration . Biomacromolecules , 2017 . 18 2080 -2089 . DOI:10.1021/acs.biomac.7b00408http://doi.org/10.1021/acs.biomac.7b00408 .
Duan, B.; Gao, H.; He, M.; Zhang, L. . Hydrophobic modification on surface of chitin sponges for highly effective separation of oil . ACS Appl. Mater. Interfaces , 2014 . 6 19933 -19942 . DOI:10.1021/am505414yhttp://doi.org/10.1021/am505414y .
Knecht, E.; Hibbert, E. . Some observations relating to chitin . J. Soc. Dyers Colour. , 1926 . 42 343 -345. .
Clark, G. L.; Smith, A. F. . X-ray diffraction studies of chitin, chitosan, and derivatives . J. Phys. Chem. , 1936 . 40 863 -879 . DOI:10.1021/j150376a001http://doi.org/10.1021/j150376a001 .
Meyer, K. H.; Wehrli, H. . Comparaison chimique de la chitine et de la cellulose . Helv. Chim. Acta , 1937 . 20 353 -362 . DOI:10.1002/hlca.19370200156http://doi.org/10.1002/hlca.19370200156 .
Hackman, R. H. . Studies on chitin V. The action of mineral acids on chitin . Aust. J. Biol. Sci. , 1962 . 15 526 -537. .
Nagasawa, K.; Tohira, Y.; Inoue, Y.; Tanoura, N. . Reaction between carbohydrates and sulfuric acid: Part I. Depolymerization and sulfation of polysaccharides by sulfuric acid . Carbohydr. Res. , 1971 . 18 95 -102 . DOI:10.1016/S0008-6215(00)80261-Xhttp://doi.org/10.1016/S0008-6215(00)80261-X .
Vincendon, M. . Regenerated chitin from phosphoric acid solutions . Carbohydr. Polym. , 1997 . 32 233 -237 . DOI:10.1016/S0144-8617(97)00005-2http://doi.org/10.1016/S0144-8617(97)00005-2 .
Wu, T.; Wang, G.; Gao, C.; Chen, Z.; Feng, L.; Wang, P.; Zeng, X.; Wu, Z. . Phosphoric acid-based preparing of chitin nanofibers and nanospheres . Cellulose , 2016 . 23 477 -491 . DOI:10.1007/s10570-015-0829-2http://doi.org/10.1007/s10570-015-0829-2 .
von Weimarn, P. P. . Conversion of fibroin, chitin, casein, and similar substances into the ropy-plastic state and colloidal solution . Ind. Eng. Chem. , 1927 . 19 109 -110 . DOI:10.1021/ie50205a034http://doi.org/10.1021/ie50205a034 .
von Weimarn, P. P. . Zur dispersoidchemie von cellulose . Kolloidzeitschrift , 1912 . 11 41 -47. .
Gagnaire, D.; Saintgermain, J.; Vincendon, M. . NMR studies of chitin and chitin derivatives . Macromol. Chem. Phys. , 1982 . 183 593 -601 . DOI:10.1002/macp.1982.021830309http://doi.org/10.1002/macp.1982.021830309 .
Musatova, G. N.; Mogilevskii, E. M.; Ginzberg, M. A.; Arkhangelskii, D. N. . The dissolution temperature of cellulose xanthate . Fibre Chem. , 1972 . 2 451 -453 . DOI:10.1007/BF00581007http://doi.org/10.1007/BF00581007 .
Noguchi, J.; Wada, O.; Seo, H.; Tokura, S.; Nishi, N. . Chitin and chitosan-cellulose fibres . Kobunshi Kagaku , 1973 . 30 320 -326 . DOI:10.1295/koron1944.30.320http://doi.org/10.1295/koron1944.30.320 .
Sannan, T.; Kurita, K.; Iwakura, Y. . Studies on chitin, 1. Solubility change by alkaline treatment and film casting . Makromo. Chem. , 1975 . 176 1191 -1195 . DOI:10.1002/macp.1975.021760426http://doi.org/10.1002/macp.1975.021760426 .
Einbu, A.; Naess, S. N.; Elgsaeter, A.; Vårum, K. M. . Solution properties of chitin in alkali . Biomacromolecules , 2004 . 5 2048 -2054 . DOI:10.1021/bm049710dhttp://doi.org/10.1021/bm049710d .
Feng, F.; Liu, Y.; Hu, K. . Influence of alkali-freezing treatment on the solid state structure of chitin . Carbohydr. Res. , 2004 . 339 2321 -2324 . DOI:10.1016/j.carres.2004.06.017http://doi.org/10.1016/j.carres.2004.06.017 .
Cai, J.; Zhang, L. . Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions . Macromol. Biosci. , 2005 . 5 539 -548 . DOI:10.1002/mabi.200400222http://doi.org/10.1002/mabi.200400222 .
Cai, J.; Zhang, L. . Unique gelation behavior of cellulose in NaOH/Urea aqueous solution . Biomacromolecules , 2006 . 7 183 -189 . DOI:10.1021/bm0505585http://doi.org/10.1021/bm0505585 .
Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B. . Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties . Adv. Mater. , 2007 . 19 821 -825 . DOI:10.1002/adma.200601521http://doi.org/10.1002/adma.200601521 .
Cai, J.; Zhang, L.; Liu, S. L.; Liu, Y. T.; Xu, X. J.; Chen, X. M.; Chu, B.; Guo, X. L.; Xu, J.; Cheng, H.; Han, C. C.; Kuga, S. . Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures . Macromolecules , 2008 . 41 9345 -9351 . DOI:10.1021/ma801110ghttp://doi.org/10.1021/ma801110g .
Hu, X.; Du, Y.; Tang, Y.; Wang, Q.; Feng, T.; Yang, J.; Kennedy, J. F. . Solubility and property of chitin in NaOH/urea aqueous solution . Carbohydr. Polym. , 2007 . 70 451 -458 . DOI:10.1016/j.carbpol.2007.05.002http://doi.org/10.1016/j.carbpol.2007.05.002 .
Ding, B.; Cai, J.; Huang, J.; Zhang, L.; Chen, Y.; Shi, X.; Du, Y.; Kuga, S. . Facile preparation of robust and biocompatible chitin aerogels . J. Mater. Chem. , 2012 . 22 5801 -5809 . DOI:10.1039/c2jm16032chttp://doi.org/10.1039/c2jm16032c .
Cai, J.; Huang, J. C.; Zhang, L. N. 2013, ZL 201310034088.4.
Huang, J. Rapid dissolution of chitin in potassium hydroxide/urea aqueous solution under low temperature, and preparation and characterization of novel materials. Doctoral thesis, Wuhan University, Hubei, China, 2017.
Ding, B.; Zhao, D.; Song, J.; Gao, H.; Xu, D.; Xu, M.; Cao, X.; Zhang, L.; Cai, J. . Light weight, mechanically strong and biocompatible α-chitin aerogels from different aqueous alkali hydroxide/urea solutions . Sci. China Chem. , 2016 . 59 1405 -1414 . DOI:10.1007/s11426-016-0205-5http://doi.org/10.1007/s11426-016-0205-5 .
Xu, H.; Fang, Z.; Tian, W.; Wang, Y.; Ye, Q.; Zhang, L.; Cai, J. . Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing . Adv. Mater. , 2018 . 30 1801100 DOI:10.1002/adma.201801100http://doi.org/10.1002/adma.201801100 .
Cai, J.; Zhang, L. N. Method for continuously preparing chitin/chitosan solutions with different deacetylation degrees. 2017, CN201711023349A.
Fang, Y.; Duan, B.; Lu, A.; Liu, M.; Liu, H.; Xu, X.; Zhang, L. . Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution . Biomacromolecules , 2015 . 16 1410 -1417 . DOI:10.1021/acs.biomac.5b00195http://doi.org/10.1021/acs.biomac.5b00195 .
Fang, Y.; Zhang, R.; Duan, B.; Liu, M.; Lu, A.; Zhang, L. . Recyclable universal solvents for chitin to chitosan with various degrees of acetylation and construction of robust hydrogels . ACS Sustain. Chem. Eng. , 2017 . 5 2725 -2733 . DOI:10.1021/acssuschemeng.6b03055http://doi.org/10.1021/acssuschemeng.6b03055 .
Ru, G.; Luo, H.; Liang, X.; Wang, L.; Liu, C.; Feng, J. . Quantitative NMR investigation on the low-temperature dissolution mechanism of chitin in NaOH/urea aqueous solution . Cellulose , 2015 . 22 2221 -2229 . DOI:10.1007/s10570-015-0667-2http://doi.org/10.1007/s10570-015-0667-2 .
Austin, P. R. Chitin solution. 1977, US4059457A.
Poirier, M.; Charlet, G. . Chitin fractionation and characterization in N,N-dimethylacetamide/lithium chloride solvent system . Carbohydr. Polym. , 2002 . 50 363 -370 . DOI:10.1016/S0144-8617(02)00040-1http://doi.org/10.1016/S0144-8617(02)00040-1 .
Germain, J. S.; Vincendon, M. . 1H, 13C and 7Li nuclear magnetic resonance study of the lithium chloride-N,N-dimethylacetamide system . Org. Magn. Reson. , 1983 . 21 371 -375 . DOI:10.1002/omr.1270210607http://doi.org/10.1002/omr.1270210607 .
Vincendon, M. . 1H NMR study of the chitin dissolution mechanism . Makromo. Chem. , 1985 . 186 1787 -1795 . DOI:10.1002/macp.1985.021860907http://doi.org/10.1002/macp.1985.021860907 .
de Vasconcelos, C. L.; Bezerril, P. M.; Pereira, M. R.; Ginani, M. F.; Fonseca, J. L. C. . Viscosity-temperature behavior of chitin solutions using lithium chloride/DMA as solvent . Carbohydr. Res. , 2011 . 346 614 -618 . DOI:10.1016/j.carres.2010.12.016http://doi.org/10.1016/j.carres.2010.12.016 .
Austin, P. R.; Brine, C. J.; Castle, J. E.; Zikakis, J. P. . Chitin: new facets of research . Science , 1981 . 212 749 DOI:10.1126/science.7221561http://doi.org/10.1126/science.7221561 .
Okuda, H.; Takeuchi, T.; Senoh, H.; Arito, H.; Matsushima, T. . Developmental toxicity induced by inhalation exposure of pregnant rats to N,N-dimethylacetamide . J. Occup. Health , 2006 . 48 154 DOI:10.1539/joh.48.154http://doi.org/10.1539/joh.48.154 .
Gitlin, M. . Lithium side effects and toxicity: prevalence and management strategies . Int. J. Bipolar Disord. , 2016 . 4 27 DOI:10.1186/s40345-016-0068-yhttp://doi.org/10.1186/s40345-016-0068-y .
Tokura, S.; Nishi, N.; Takahashi, K.; Shirai, A.; Uraki, Y. . Novel drug delivery system by chitin derivative . Macromol. Symp. , 1995 . 99 201 -208 . DOI:10.1002/masy.19950990121http://doi.org/10.1002/masy.19950990121 .
Tokura, S.; Nishimura, S. I.; Sakairi, N.; Nishi, N. . Biological activities of biodegradable polysaccharide . Macromol. Symp. , 1996 . 101 389 -396 . DOI:10.1002/masy.19961010144http://doi.org/10.1002/masy.19961010144 .
Tamura, H.; Nagahama, H.; Tokura, S. . Preparation of chitin hydrogel under mild conditions . Cellulose , 2006 . 13 357 -364 . DOI:10.1007/s10570-006-9058-zhttp://doi.org/10.1007/s10570-006-9058-z .
Nagahama, H.; Higuchi, T.; Jayakumar, R.; Furuike, T.; Tamura, H. . XRD studies of β-chitin from squid pen with calcium solvent . Int. J. Biol. Macromol. , 2008 . 42 309 -313 . DOI:10.1016/j.ijbiomac.2007.10.011http://doi.org/10.1016/j.ijbiomac.2007.10.011 .
Sun, B. . Study on the mechanism of Nylon 6,6 dissolving process using CaCl2/MeOH as the solvent . Chinese J. Polym. Sci. , 1994 . 12 57 -65. .
Hattori, M.; Saito, M.; Okajima, K.; Kamide, K. . Molecular characterization of nylon 6,6 and its dissolved state in mixture of calcium chloride and methanol . Polym. J. , 1995 . 27 631 -644 . DOI:10.1295/polymj.27.631http://doi.org/10.1295/polymj.27.631 .
Wasserscheid, P.; Keim, W. . Ionic liquids—new “solutions” for transition metal catalysis . Angew. Chem. Int. Ed. , 2000 . 39 3772 -3789 . DOI:10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5http://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5 .
Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. . Dissolution of cellose with ionic liquids . J. Am. Chem. Soc. , 2002 . 124 4974 -4975 . DOI:10.1021/ja025790mhttp://doi.org/10.1021/ja025790m .
Reichert, W. M.; Swatloski, R. P.; Rogers, R. D. In The 222nd ACS National Meeting, Chicago, IL, 2001.
Reichert, W. M.; Swatloski, R. P.; Rogers, R. D. In The 221st ACS National Meeting, San Diego, CA, 2001.
Spear, S. K.; Swatloski, R. P.; Rogers, R. D. In The 221st ACS National Meeting, San Diego, CA, 2001.
Shamshina, J. L. . Chitin in ionic liquids: historical insights into the polymer's dissolution and isolation a review . Green Chem. , 2019 . 21 3974 -3993 . DOI:10.1039/C9GC01830Ahttp://doi.org/10.1039/C9GC01830A .
Xie, H.; Zhang, S.; Li, S. . Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2 . Green Chem. , 2006 . 8 630 -633 . DOI:10.1039/b517297ghttp://doi.org/10.1039/b517297g .
Wu, Y.; Sasaki, T.; Irie, S.; Sakurai, K. . A novel biomass-ionic liquid platform for the utilization of native chitin . Polymer , 2008 . 49 2321 -2327 . DOI:10.1016/j.polymer.2008.03.027http://doi.org/10.1016/j.polymer.2008.03.027 .
Prasad, K.; Murakami, M.; Kaneko, Y.; Takada, A.; Nakamura, Y.; Kadokawa, J. . Weak gel of chitin with ionic liquid, 1-allyl-3-methylimidazolium bromide . Int. J. Biol. Macromol. , 2009 . 45 221 -225 . DOI:10.1016/j.ijbiomac.2009.05.004http://doi.org/10.1016/j.ijbiomac.2009.05.004 .
Qin, Y.; Lu, X.; Sun, N.; Rogers, R. D. . Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers . Green Chem. , 2010 . 12 968 -971 . DOI:10.1039/c003583ahttp://doi.org/10.1039/c003583a .
Rogers R. D. 2019, Application Number US2019/0040209A1.
Wang, W. T.; Zhu, J.; Wang, X. L.; Huang, Y.; Wang, Y. Z. . Dissolution behavior of chitin in ionic liquids . J. Maromol. Sci. B , 2010 . 49 528 -541 . DOI:10.1080/00222341003595634http://doi.org/10.1080/00222341003595634 .
Taft, R. W.; Kamlet, M. J. . The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities . J. Am. Chem. Soc. , 1976 . 98 2886 -2894 . DOI:10.1021/ja00426a036http://doi.org/10.1021/ja00426a036 .
Kamlet, M. J.; Taft, R. W. . The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities . J. Am. Chem. Soc. , 1976 . 98 377 -383 . DOI:10.1021/ja00418a009http://doi.org/10.1021/ja00418a009 .
Yokoyama, T.; Taft, R. W.; Kamlet, M. J. . The solvatochromic comparison method. 3. Hydrogen bonding by some 2-nitroaniline derivatives . J. Am. Chem. Soc. , 1976 . 98 3233 -3237 . DOI:10.1021/ja00427a030http://doi.org/10.1021/ja00427a030 .
Kamlet, M. J.; Abboud, J. L.; Taft, R. W. . The solvatochromic comparison method. 6. The π* scale of solvent polarities . J. Am. Chem. Soc. , 1977 . 99 6027 -6038 . DOI:10.1021/ja00460a031http://doi.org/10.1021/ja00460a031 .
Crowhurst, L.; Mawdsley, P. R.; Perez-Arlandis, J. M.; Salter, P. A.; Welton, T. . Solvent–solute interactions in ionic liquids . Phys. Chem. Chem. Phys. , 2003 . 5 2790 -2794 . DOI:10.1039/B303095Dhttp://doi.org/10.1039/B303095D .
Shimo, M.; Abe, M.; Ohno, H. . Functional comparison of polar ionic liquids and onium hydroxides for chitin dissolution and deacetylation to chitosan . ACS Sustain. Chem. Eng. , 2016 . 4 3722 -3727 . DOI:10.1021/acssuschemeng.6b00368http://doi.org/10.1021/acssuschemeng.6b00368 .
Uto, T.; Idenoue, S.; Yamamoto, K.; Kadokawa, J. I. . Understanding dissolution process of chitin crystal in ionic liquids: theoretical study . Phys. Chem. Chem. Phys. , 2018 . 20 20669 -20677 . DOI:10.1039/C8CP02749Hhttp://doi.org/10.1039/C8CP02749H .
Petkovic, M.; Seddon, K. R.; Rebelo, L. P. N.; Silva, Pereira C. . Ionic liquids: a pathway to environmental acceptability . Chem. Soc. Rev. , 2011 . 40 1383 -1403 . DOI:10.1039/C004968Ahttp://doi.org/10.1039/C004968A .
Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. . Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate . Green Chem. , 2003 . 5 361 -363 . DOI:10.1039/b304400ahttp://doi.org/10.1039/b304400a .
Smiglak, M.; Reichert, W. M.; Holbrey, J. D.; Wilkes, J. S.; Sun, L.; Thrasher, J. S.; Kirichenko, K.; Singh, S.; Katritzky, A. R.; Rogers, R. D. . Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? . Chem. Commun. , 2006 . 2554 -2556 . DOI:10.1039/b602086khttp://doi.org/10.1039/b602086k .
Ostadjoo, S.; Berton, P.; Shamshina, J. L.; Rogers, R. D. . Scaling-up ionic liquid-based technologies: how much do we care about their toxicity? Prima facie information on 1-ethyl-3-methylimidazolium acetate . Toxicol. Sci. , 2017 . 161 249 -265. .
Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. . Novel solvent properties of choline chloride/urea mixtures . Chem. Commun. , 2003 . 70 -71 . DOI:10.1039/b210714ghttp://doi.org/10.1039/b210714g .
Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. . Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids . J. Am. Chem. Soc. , 2004 . 126 9142 -9147 . DOI:10.1021/ja048266jhttp://doi.org/10.1021/ja048266j .
Francisco, M.; van, den Bruinhorst A.; Kroon, M. C. . New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing . Green Chem. , 2012 . 14 2153 -2157 . DOI:10.1039/c2gc35660khttp://doi.org/10.1039/c2gc35660k .
Silva, L. P.; Araújo, C. F.; Abranches, D. O.; Melle-Franco, M.; Martins, M. A. R.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Pinho, S. P.; Coutinho, J. A. P. . What a difference a methyl group makes – probing choline-urea molecular interactions through urea structure modification . Phys. Chem. Chem. Phys. , 2019 . 21 18278 -18289 . DOI:10.1039/C9CP03552Dhttp://doi.org/10.1039/C9CP03552D .
Ashworth, C. R.; Matthews, R. P.; Welton, T.; Hunt, P. A. . Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent . Phys. Chem. Chem. Phys. , 2016 . 18 18145 -18160 . DOI:10.1039/C6CP02815Bhttp://doi.org/10.1039/C6CP02815B .
Sharma, M.; Mukesh, C.; Mondal, D.; Prasad, K. . Dissolution of α-chitin in deep eutectic solvents . RSC Adv. , 2013 . 3 18149 -18155 . DOI:10.1039/c3ra43404dhttp://doi.org/10.1039/c3ra43404d .
Mukesh, C.; Mondal, D.; Sharma, M.; Prasad, K. . Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers . Carbohydr. Polym. , 2014 . 103 466 -471 . DOI:10.1016/j.carbpol.2013.12.082http://doi.org/10.1016/j.carbpol.2013.12.082 .
Idenoue, S.; Yamamoto, K.; Kadokawa, J. I. . Dissolution of chitin in deep eutectic solvents composed of imidazolium ionic liquids and thiourea . ChemEngineering , 2019 . 3 90 DOI:10.3390/chemengineering3040090http://doi.org/10.3390/chemengineering3040090 .
Shuklov, I. A.; Dubrovina, N. V.; Boerner, A. . Fluorinated alcohols as solvents, cosolvents and additives in homogeneous catalysis . ChemInform , 2007 . 19 2925 -2943 . DOI:10.1055/s-2007-983902http://doi.org/10.1055/s-2007-983902 .
Tokura, S.; Nishi, N.; Noguchi, J. . Studies on chitin. III. Preparation of chitin fibers . Polym. J. , 1979 . 11 781 -786 . DOI:10.1295/polymj.11.781http://doi.org/10.1295/polymj.11.781 .
Austin, P. R. Chitin solutions and purification of chitin. In Methods enzymol. Academic Press, 1988, 161.
Buffington, L. A.; Stevens, E. S. . Far-ultraviolet circular dichroism of solutions, gels, and films of chitins . J. Am. Chem. Soc. , 1979 . 101 5159 -5162 . DOI:10.1021/ja00512a008http://doi.org/10.1021/ja00512a008 .
Min, B. M.; Lee, S. W.; Lim, J. N.; You, Y.; Lee, T. S.; Kang, P. H.; Park, W. H. . Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers . Polymer , 2004 . 45 7137 -7142 . DOI:10.1016/j.polymer.2004.08.048http://doi.org/10.1016/j.polymer.2004.08.048 .
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构
 京公网安备11010802024621