a.College of Chemistry, Nanchang University, Nanchang 330031, China
b.Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
c.Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, China
d.Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
e.Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, Nanchang 330022, China
liutaozhx@ust.hk (T.L.)
yang@unist.ac.kr (C.D.Y.)
ywchen@ncu.edu.cn (Y.W.C.)
Scan for full text
Youdi Zhang, Yong Wang, Ruijie Ma, 等. Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2020,38(8):797-805.
Youdi Zhang, Yong Wang, Ruijie Ma, et al. Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2020,38(8):797-805.
Youdi Zhang, Yong Wang, Ruijie Ma, 等. Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2020,38(8):797-805. DOI: 10.1007/s10118-020-2435-5.
Youdi Zhang, Yong Wang, Ruijie Ma, et al. Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2020,38(8):797-805. DOI: 10.1007/s10118-020-2435-5.
In this study, wide bandgap (WBG) two-dimensional (2D) copolymer donors (,DZ1,DZ2, and ,DZ3,) based on benzodithiophene (BDT) on alkoxyphenyl conjugated side chains without and with different amounts of chlorine atoms and difluorobenzotriazole (FBTZ) are designed and synthesized successfully for efficient non-fullerene polymer solar cells (PSCs). Three polymer donors ,DZ1,DZ2, and ,DZ3, display similar absorption spectra at 300−700 nm range with optional band-gap (,E,g,opt,) of 1.84, 1.92, and 1.97 eV, respectively. Compared with reported ,DZ1, without chlorine substitution, it is found that introducing chlorine atoms into the ,meta,-position of the alkoxyphenyl group affords polymer possessing a deeper the highest occupied molecular orbital (HOMO) energy level, which can increase open circuit voltage (,V,OC,) of PSCs, as well as improve hole mobility. Non-fullerene bulk heterojunction PSCs based on ,DZ2,:MeIC demonstrate a relatively high power conversion efficiency (PCE) of 10.22% with a ,V,OC, of 0.88 V, a short-circuit current density (,J,SC,) of 17.62 mA/cm,2, and a fill factor (FF) of 68%, compared with PSCs based on ,DZ1,:MeIC (a PCE of 8.26%) and ,DZ3,:MeIC (a PCE of 6.28%). The results imply that adjusting chlorine atom amount on alkoxyphenyl side chains based on BDT polymer donors is a promising approach of synthesizing electron-rich building block for high performance of PSCs.
Wide-bandgap copolymerOrganic solar cellsPolymer donorsChlorine substitutionNonfullerene polymer solar cells
Li, Y. . Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption . Acc. Chem. Res. , 2012 . 45 723 -733 . DOI:10.1021/ar2002446http://doi.org/10.1021/ar2002446 .
Guo, X.; Facchetti, A.; Marks, T. J. . Imide- and amide-functionalized polymer semiconductors . Chem. Rev. , 2014 . 114 8943 -9021 . DOI:10.1021/cr500225dhttp://doi.org/10.1021/cr500225d .
Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. . Non-fullerene acceptors for organic solar cells . Nat. Rev. Mater. , 2018 . 3 18003 DOI:10.1038/natrevmats.2018.3http://doi.org/10.1038/natrevmats.2018.3 .
Liu, T.; Zhang, Y.; Shao, Y.; Ma, R.; Luo, Z.; Xiao, Y.; Yang, T.; Lu, X.; Yuan, Z.; Yan, H.; Chen, Y.; Li, Y . Asymmetric acceptors with fluorine and chlorine substitution for organic solar cells toward 16.83%efficiency . Adv. Funct. Mater. , 2020 . 32 2000456 DOI:10.1002/adfm.202000456http://doi.org/10.1002/adfm.202000456 .
Cui, C.; Li, Y. . High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors . Energy Environ. Sci. , 2019 . 12 3225 -3246 . DOI:10.1039/C9EE02531Fhttp://doi.org/10.1039/C9EE02531F .
Genene, Z.; Mammo, W.; Wang, E.; Andersson, M. R. . Recent advances in n-type polymers for all-polymer solar cells . Adv. Mater. , 2019 . 31 1807275 DOI:10.1002/adma.201807275http://doi.org/10.1002/adma.201807275 .
Luo, Z.; Liu, T.; Chen, Z.; Xiao, Y.; Zhang, G.; Huo, L.; Zhong, C.; Lu, X.; Yan, H.; Sun, Y.; Yang, C. . Isomerization of perylene diimide based acceptors enabling high-performance nonfullerene organic solar cells with excellent fill factor . Adv. Sci. , 2019 . 6 1802065 DOI:10.1002/advs.201802065http://doi.org/10.1002/advs.201802065 .
Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. . Organic solar cells based on non-fullerene acceptors . Nat. Mater. , 2018 . 17 119 -128 . DOI:10.1038/nmat5063http://doi.org/10.1038/nmat5063 .
Zhao, C.; Wang, J.; Jiao, J.; Huang, L.; Tang, J. . Recent advances of polymer acceptors for high-performance organic solar cells . J. Mater. Chem. C , 2020 . 8 28 -43 . DOI:10.1039/C9TC05567Chttp://doi.org/10.1039/C9TC05567C .
Liu, T.; Xue, X.; Huo, L.; Sun, X.; An, Q.; Zhang, F.; Russell, T. P.; Liu, F.; Sun, Y. . Highly efficient parallel-like ternary organic solar cells . Chem. Mater. , 2017 . 29 2914 -2920 . DOI:10.1021/acs.chemmater.6b05194http://doi.org/10.1021/acs.chemmater.6b05194 .
Ma, R.; Chen, Y.; Liu, T.; Xiao, Y.; Luo, Z.; Zhang, M.; Luo, S.; Lu, X.; Zhang, G.; Li, Y.; Yan, H.; Chen, K. . Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor . J. Mater. Chem. C , 2020 . 8 909 -915 . DOI:10.1039/C9TC06362Ehttp://doi.org/10.1039/C9TC06362E .
Huang, C.; Liao, X.; Gao, K.; Zuo, L.; Lin, F.; Shi, X.; Li, C. Z.; Liu, H.; Li, X.; Liu, F.; Chen, Y.; Chen, H.; Jen, A. K. Y. . Highly efficient organic solar cells based on S, N-heteroacene non-fullerene acceptors . Chem. Mater. , 2018 . 30 5429 -5434 . DOI:10.1021/acs.chemmater.8b02276http://doi.org/10.1021/acs.chemmater.8b02276 .
Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Röhr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; Emmott, C. J. M.; Nelson, J.; Brabec, C. J.; Amassian, A.; Salleo, A.; Kirchartz, T.; Durrant, J. R.; McCulloch, I. . Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells . Nat. Mater. , 2017 . 16 363 -369 . DOI:10.1038/nmat4797http://doi.org/10.1038/nmat4797 .
He, Q.; Shahid, M.; Wu, J.; Jiao, X.; Eisner, F. D.; Hodsden, T.; Fei, Z.; Anthopoulos, T. D.; McNeill, C. R.; Durrant, J. R.; Heeney, M. . Fused cyclopentadithienothiophene acceptor enables ultrahigh short-circuit current and high efficiency >11% in as-cast organic solar cells . Adv. Funct. Mater. , 2019 . 29 1904956 DOI:10.1002/adfm.201904956http://doi.org/10.1002/adfm.201904956 .
Yu, Z. P.; Liu, Z. X.; Chen, F. X.; Qin, R.; Lau, T. K.; Yin, J. L.; Kong, X.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. . Simple non-fused electron acceptors for efficient and stable organic solar cells . Nat. Commun. , 2019 . 10 2152 DOI:10.1038/s41467-019-10098-zhttp://doi.org/10.1038/s41467-019-10098-z .
Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y. . Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency >10% . Adv. Mater. , 2016 . 28 10008 -10015 . DOI:10.1002/adma.201602570http://doi.org/10.1002/adma.201602570 .
Feng, H.; Yi, Y. Q. Q.; Ke, X.; Yan, J.; Zhang, Y.; Wan, X.; Li, C.; Zheng, N.; Xie, Z.; Chen, Y. . New anthracene-fused nonfullerene acceptors for high-efficiency organic solar cells: energy level modulations enabling match of donor and acceptor . Adv. Energy Mater. , 2019 . 9 1803541 DOI:10.1002/aenm.201803541http://doi.org/10.1002/aenm.201803541 .
Zhang, B.; Yu, Y.; Zhou, J.; Wang, Z.; Tang, H.; Xie, S.; Xie, Z.; Hu, L.; Yip, H. L.; Ye, L.; Ade, H.; Liu, Z.; He, Z.; Duan, C.; Huang, F.; Cao, Y. . 3,4-Dicyanothiophene—a versatile building block for efficient nonfullerene polymer solar cells . Adv. Energy Mater. , 2020 . 1904247 DOI:10.1002/aenm.201904247http://doi.org/10.1002/aenm.201904247 .
Li, J.; Liang, Z.; Li, X.; Li, H.; Wang, Y.; Qin, J.; Tong, J.; Yan, L.; Bao, X.; Xia, Y. . Insights into excitonic dynamics of terpolymer-based high-efficiency nonfullerene polymer solar cells: enhancing the yield of charge separation states . ACS Appl. Mater. Interfaces , 2020 . 12 8475 -8484 . DOI:10.1021/acsami.9b20364http://doi.org/10.1021/acsami.9b20364 .
Liu, T.; Luo, Z.; Fan, Q.; Zhang, G.; Zhang, L.; Gao, W.; Guo, X.; Ma, W.; Zhang, M.; Yang, C.; Li, Y.; Yan, H. . Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors . Energy Environ. Sci. , 2018 . 11 3275 -3282 . DOI:10.1039/C8EE01700Jhttp://doi.org/10.1039/C8EE01700J .
Li, J.; Wang, Y.; Liang, Z.; Qin, J.; Ren, M.; Tong, J.; Yang, C.; Yang, C.; Bao, X.; Xia, Y. . Non-toxic green food additive enables efficient polymer solar cells through adjusting the phase composition distribution and boosting charge transport . J. Mater. Chem. C , 2020 . 8 2483 -2490 . DOI:10.1039/C9TC06571Ghttp://doi.org/10.1039/C9TC06571G .
Sun, H.; Liu, T.; Yu, J.; Lau, T. K.; Zhang, G.; Zhang, Y.; Su, M.; Tang, Y.; Ma, R.; Liu, B.; Liang, J.; Feng, K.; Lu, X.; Guo, X.; Gao, F.; Yan, H. . A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency . Energy Environ. Sci. , 2019 . 12 3328 -3337 . DOI:10.1039/C9EE01890Ehttp://doi.org/10.1039/C9EE01890E .
Chao, P.; Chen, H.; Zhu, Y.; Lai, H.; Mo, D.; Zheng, N.; Chang, X.; Meng, H.; He, F. . A benzo[1,2-b:4,5-c′]dithiophene-4,8-dione-based polymer donor achieving an efficiency over 16% . Adv. Mater. , 2020 . 1907059 .
Liu, T.; Luo, Z.; Chen, Y.; Yang, T.; Xiao, Y.; Zhang, G.; Ma, R.; Lu, X.; Zhan, C.; Zhang, M.; Yang, C.; Li, Y.; Yao, J.; Yan, H. . A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15% . Energy Environ. Sci. , 2019 . 12 2529 -2536 . DOI:10.1039/C9EE01030Khttp://doi.org/10.1039/C9EE01030K .
Li, G.; Yang, W.; Wang, S.; Liu, T.; Yan, C.; Li, G.; Zhang, Y.; Li, D.; Wang, X.; Hao, P.; Li, J.; Huo, L.; Yan, H.; Tang, B. . Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells . J. Mater. Chem. C , 2019 . 7 10901 -10907 . DOI:10.1039/C9TC03457Ahttp://doi.org/10.1039/C9TC03457A .
Liao, Q.; Sun, H.; Li, B.; Guo, X. . 26 mA cm−2 JSC achieved in the integrated solar cells . Sci. Bull. , 2019 . 64 1747 -1749 . DOI:10.1016/j.scib.2019.10.005http://doi.org/10.1016/j.scib.2019.10.005 .
Zhang, Y.; Guo, X.; Guo, B.; Su, W.; Zhang, M.; Li, Y. . Nonfullerene polymer solar cells based on a perylene monoimide acceptor with a high open-circuit voltage of 1.3 V . Adv. Funct. Mater. , 2017 . 27 1603892 DOI:10.1002/adfm.201603892http://doi.org/10.1002/adfm.201603892 .
Luo, Z.; Sun, R.; Zhong, C.; Liu, T.; Zhang, G.; Zou, Y.; Jiao, X.; Min, J.; Yang, C. . Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells . Sci. China Chem. , 2020 . 63 361 -369 . DOI:10.1007/s11426-019-9670-2http://doi.org/10.1007/s11426-019-9670-2 .
An, Q.; Zhang, J.; Gao, W.; Qi, F.; Zhang, M.; Ma, X.; Yang, C.; Huo, L.; Zhang, F. . Efficient ternary organic solar cells with two compatible non-fullerene materials as one alloyed acceptor . Small , 2018 . 14 1802983 DOI:10.1002/smll.201802983http://doi.org/10.1002/smll.201802983 .
Chen, H.; Hu, D.; Yang, Q.; Gao, J.; Fu, J.; Yang, K.; He, H.; Chen, S.; Kan, Z.; Duan, T.; Yang, C.; Ouyang, J.; Xiao, Z.; Sun, K.; Lu, S. . All-small-molecule organic solar cells with an ordered liquid crystalline donor . Joule , 2019 . 3 3034 -3047 . DOI:10.1016/j.joule.2019.09.009http://doi.org/10.1016/j.joule.2019.09.009 .
Luo, Z.; Liu, T.; Xiao, Y.; Yang, T.; Chen, Z.; Zhang, G.; Zhong, C.; Ma, R.; Chen, Y.; Zou, Y. . Significantly improving the performance of polymer solar cells by the isomeric ending-group based small molecular acceptors: insight into the isomerization . Nano Energy , 2019 . 66 104146 DOI:10.1016/j.nanoen.2019.104146http://doi.org/10.1016/j.nanoen.2019.104146 .
Feng, L.; Yuan, J.; Zhang, Z.; Peng, H.; Zhang, Z. G.; Xu, S.; Liu, Y.; Li, Y.; Zou, Y. . Thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics . ACS Appl. Mater. Interfaces , 2017 . 9 31985 -31992 . DOI:10.1021/acsami.7b10995http://doi.org/10.1021/acsami.7b10995 .
Brus, V. V.; Lee, J.; Luginbuhl, B. R.; Ko, S. J.; Bazan, G. C.; Nguyen, T. Q. . Solution-processed semitransparent organic photovoltaics: from molecular design to device performance . Adv. Mater. , 2019 . 31 1900904 DOI:10.1002/adma.201900904http://doi.org/10.1002/adma.201900904 .
Chen, S.; Jung, S.; Cho, H. J.; Kim, N. H.; Jung, S.; Xu, J.; Oh, J.; Cho, Y.; Kim, H.; Lee, B.; An, Y.; Zhang, C.; Xiao, M.; Ki, H.; Zhang, Z. G.; Kim, J. Y.; Li, Y.; Park, H.; Yang, C. . Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices . Angew. Chem. Int. Ed. , 2018 . 57 13277 -13282 . DOI:10.1002/anie.201807513http://doi.org/10.1002/anie.201807513 .
Fan, Q.; Su, W.; Chen, S.; Kim, W.; Chen, X.; Lee, B.; Liu, T.; Mé ndez-Romero, U. A.; Ma, R.; Yang, T.; Zhuang, W.; Li, Y.; Li, Y.; Kim, T. S.; Hou, L.; Yang, C.; Yan, H.; Yu, D.; Wang, E. . Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms . Joule , 2020 . 4 658 -672 . DOI:10.1016/j.joule.2020.01.014http://doi.org/10.1016/j.joule.2020.01.014 .
Xia, R.; Brabec, C. J.; Yip, H. L.; Cao, Y. . High-throughput optical screening for efficient semitransparent organic solar cells . Joule , 2019 . 3 2241 -2254 . DOI:10.1016/j.joule.2019.06.016http://doi.org/10.1016/j.joule.2019.06.016 .
Du, X.; Heumueller, T.; Gruber, W.; Classen, A.; Unruh, T.; Li, N.; Brabec, C. J. . Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years . Joule , 2019 . 3 215 -226 . DOI:10.1016/j.joule.2018.09.001http://doi.org/10.1016/j.joule.2018.09.001 .
Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B.; Luo, Z.; Yang, W.; Hu, Z.; Guo, J.; Shi, M.; Yang, C.; Huang, F.; Li, Y.; Min, J. . A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency . Joule , 2020 . 4 407 -419 . DOI:10.1016/j.joule.2019.12.004http://doi.org/10.1016/j.joule.2019.12.004 .
Sun, C.; Qin, S.; Wang, R.; Chen, S.; Pan, F.; Qiu, B.; Shang, Z.; Meng, L.; Zhang, C.; Xiao, M.; Yang, C.; Li, Y. . High efficiency polymer solar cells with efficient hole transfer at zero highest occupied molecular orbital offset between methylated polymer donor and brominated acceptor . J. Am. Chem. Soc. , 2020 . 142 1465 -1474 . DOI:10.1021/jacs.9b09939http://doi.org/10.1021/jacs.9b09939 .
Sun, C.; Pan, F.; Chen, S.; Wang, R.; Sun, R.; Shang, Z.; Qiu, B.; Min, J.; Lv, M.; Meng, L.; Zhang, C.; Xiao, M.; Yang, C.; Li, Y. . Achieving fast charge separation and low nonradiative recombination loss by rational fluorination for high-efficiency polymer solar cells . Adv. Mater. , 2019 . 31 1905480 DOI:10.1002/adma.201905480http://doi.org/10.1002/adma.201905480 .
Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J. . Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages . Nat. Commun. , 2019 . 10 2515 DOI:10.1038/s41467-019-10351-5http://doi.org/10.1038/s41467-019-10351-5 .
Hong, L.; Yao, H.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R.; Liao, Q.; Gao, B.; Xian, K.; Woo, H. Y.; Ge, Z.; Hou, J. . Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency . Adv. Mater. , 2019 . 31 1903441 DOI:10.1002/adma.201903441http://doi.org/10.1002/adma.201903441 .
Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; Ma, W.; Hou, J. . 17% Efficiency organic photovoltaic cell with superior processability . Natl. Sci. Rev. , 2020 . DOI: 10.1093/nsr/nwz200 DOI:10.1093/nsr/nwz200http://doi.org/10.1093/nsr/nwz200 .
Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. . Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state . Macromolecules , 2012 . 45 9611 -9617 . DOI:10.1021/ma301900hhttp://doi.org/10.1021/ma301900h .
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. . Molecular optimization enables over 13% efficiency in organic solar cells . J. Am. Chem. Soc. , 2017 . 139 7148 -7151 . DOI:10.1021/jacs.7b02677http://doi.org/10.1021/jacs.7b02677 .
Xue, L.; Yang, Y.; Xu, J.; Zhang, C.; Bin, H.; Zhang, Z. G.; Qiu, B.; Li, X.; Sun, C.; Gao, L.; Yao, J.; Chen, X.; Yang, Y.; Xiao, M.; Li, Y. . Side chain engineering on medium bandgap copolymers to suppress triplet formation for high-efficiency polymer solar cells . Adv. Mater. , 2017 . 29 1703344 DOI:10.1002/adma.201703344http://doi.org/10.1002/adma.201703344 .
Fan, B.; Du, X.; Liu, F.; Zhong, W.; Ying, L.; Xie, R.; Tang, X.; An, K.; Xin, J.; Li, N.; Ma, W.; Brabec, C. J.; Huang, F.; Cao, Y. . Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics . Nat. Energy , 2018 . 3 1051 -1058 . DOI:10.1038/s41560-018-0263-4http://doi.org/10.1038/s41560-018-0263-4 .
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. . An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 . 27 1170 -1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. . Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Zhang, Y.; Wan, Q.; Guo, X.; Li, W.; Guo, B.; Zhang, M.; Li, Y. . Synthesis and photovoltaic properties of an n-type two-dimension-conjugated polymer based on perylene diimide and benzodithiophene with thiophene conjugated side chains . J. Mater. Chem. A , 2015 . 3 18442 -18449 . DOI:10.1039/C5TA05014Fhttp://doi.org/10.1039/C5TA05014F .
Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. . A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance . Adv. Mater. , 2015 . 27 4655 -4660 . DOI:10.1002/adma.201502110http://doi.org/10.1002/adma.201502110 .
Zhang, Y.; Wang, Y.; Yang, T.; Liu, T.; Xiao, Y.; Lu, X.; Yan, H.; Yuan, Z.; Chen, Y.; Li, Y. . Thioether bond modification enables boosted photovoltaic performance of nonfullerene polymer solar cells . ACS Appl. Mater. Interfaces , 2019 . 11 32218 -32224 . DOI:10.1021/acsami.9b11700http://doi.org/10.1021/acsami.9b11700 .
Zhang, Y.; Shi, L.; Yang, T.; Liu, T.; Xiao, Y.; Lu, X.; Yan, H.; Yuan, Z.; Chen, Y.; Li, Y. . Introducing an identical benzodithiophene donor unit for polymer donors and small-molecule acceptors to unveil the relationship between the molecular structure and photovoltaic performance of non-fullerene organic solar cells . J. Mater. Chem. A , 2019 . 7 26351 -26357 . DOI:10.1039/C9TA09241Bhttp://doi.org/10.1039/C9TA09241B .
Wu, M.; Shi, L.; Hu, Y.; Chen, L.; Hu, T.; Zhang, Y.; Yuan, Z.; Chen, Y. . Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency . Chin. Chem. Lett. , 2019 . 30 1161 -1167 . DOI:10.1016/j.cclet.2019.04.029http://doi.org/10.1016/j.cclet.2019.04.029 .
Qiu, B.; Chen, S.; Li, H.; Luo, Z.; Yao, J.; Sun, C.; Li, X.; Xue, L.; Zhang, Z. G.; Yang, C.; Li, Y. . A simple approach to prepare chlorinated polymer donors with low-lying HOMO level for high performance polymer solar cells . Chem. Mater. , 2019 . 31 6558 -6567 . DOI:10.1021/acs.chemmater.8b05352http://doi.org/10.1021/acs.chemmater.8b05352 .
Li, W.; Li, G.; Guo, X.; Wang, Y.; Guo, H.; Xu, Q.; Zhang, M.; Li, Y. . A trifluoromethyl substituted wide bandgap conjugated polymer for non-fullerene polymer solar cells with 10.4% efficiency . J. Mater. Chem. A , 2018 . 6 6551 -6558 . DOI:10.1039/C7TA11059Fhttp://doi.org/10.1039/C7TA11059F .
Tang, A.; Song, W.; Xiao, B.; Guo, J.; Min, J.; Ge, Z.; Zhang, J.; Wei, Z.; Zhou, E. . Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high VOC of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells . Chem. Mater. , 2019 . 31 3941 -3947 . DOI:10.1021/acs.chemmater.8b05316http://doi.org/10.1021/acs.chemmater.8b05316 .
Tang, A.; Zhang, Q.; Du, M.; Li, G.; Geng, Y.; Zhang, J.; Wei, Z.; Sun, X.; Zhou, E. . Molecular engineering of D-π-A copolymers based on 4,8-bis(4-chlorothiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene (BDT-T-Cl) for high-performance fullerene-free organic solar cells . Macromolecules , 2019 . 52 6227 -6233 . DOI:10.1021/acs.macromol.9b01233http://doi.org/10.1021/acs.macromol.9b01233 .
Chao, P.; Mu, Z.; Wang, H.; Mo, D.; Chen, H.; Meng, H.; Chen, W.; He, F. . Chlorination of side chains: a strategy for achieving a high open circuit voltage over 1.0 V in benzo[1,2-b:4,5-b′]dithiophene-based non-fullerene solar cells . ACS Appl. Energy Mater. , 2018 . 1 2365 -2372 . DOI:10.1021/acsaem.8b00506http://doi.org/10.1021/acsaem.8b00506 .
Kini, G. P.; Jeon, S. J.; Moon, D. K. . Design principles and synergistic effects of chlorination on a conjugated backbone for efficient organic photovoltaics: a critical review . Adv. Mater. , 2020 . 32 1906175 DOI:10.1002/adma.201906175http://doi.org/10.1002/adma.201906175 .
Chao, P.; Johner, N.; Zhong, X.; Meng, H.; He, F. . Chlorination strategy on polymer donors toward efficient solar conversions . J. Energy Chem. , 2019 . 39 208 -216 . DOI:10.1016/j.jechem.2019.04.002http://doi.org/10.1016/j.jechem.2019.04.002 .
Yao, H.; Cui, Y.; Yu, R.; Gao, B.; Zhang, H.; Hou, J. . Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap . Angew. Chem. Int. Ed. , 2017 . 56 3045 -3049 . DOI:10.1002/anie.201610944http://doi.org/10.1002/anie.201610944 .
Zhang, Y.; Yao, H.; Zhang, S.; Qin, Y.; Zhang, J.; Yang, L.; Li, W.; Wei, Z.; Gao, F.; Hou, J. . Fluorination vs chlorination: a case study on high performance organic photovoltaic materials . Sci. China Chem. , 2018 . 61 1328 -1337 . DOI:10.1007/s11426-018-9260-2http://doi.org/10.1007/s11426-018-9260-2 .
Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Li, X.; Luo, S.; Lu, X.; Zhang, M.; Li, Y.; Yan, H. . Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17% . Sci. China Chem. , 2020 . 63 325 -330 . DOI:10.1007/s11426-019-9669-3http://doi.org/10.1007/s11426-019-9669-3 .
Luo, Z.; Bin, H.; Liu, T.; Zhang, Z. G.; Yang, Y.; Zhong, C.; Qiu, B.; Li, G.; Gao, W.; Xie, D.; Wu, K.; Sun, Y.; Liu, F.; Li, Y.; Yang, C. . Fine-tuning of molecular packing and energy level through methyl substitution enabling excellent small molecule acceptors for nonfullerene polymer solar cells with efficiency up to 12.54% . Adv. Mater. , 2018 . 30 1706124 DOI:10.1002/adma.201706124http://doi.org/10.1002/adma.201706124 .
Gao, W.; Zhang, M.; Liu, T.; Ming, R.; An, Q.; Wu, K.; Xie, D.; Luo, Z.; Zhong, C.; Liu, F.; Zhang, F.; Yan, H.; Yang, C. . Asymmetrical ladder-type donor-induced polar small molecule acceptor to promote fill factors approaching 77% for high-performance nonfullerene polymer solar cells . Adv. Mater. , 2018 . 30 1800052 DOI:10.1002/adma.201800052http://doi.org/10.1002/adma.201800052 .
Xie, D.; Liu, T.; Gao, W.; Zhong, C.; Huo, L.; Luo, Z.; Wu, K.; Xiong, W.; Liu, F.; Sun, Y.; Yang, C. . A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency . Solar RRL , 2017 . 1 1700044 DOI:10.1002/solr.201700044http://doi.org/10.1002/solr.201700044 .
Guo, Q.; Ma, R.; Hu, J.; Wang, Z.; Sun, H.; Dong, X.; Luo, Z.; Liu, T.; Guo, X.; Guo, X.; Yan, H.; Liu, F.; Zhang, M. . Over 15% efficiency polymer solar cells enabled by conformation tuning of newly designed asymmetric small-molecule acceptors . Adv. Funct. Mater. , 2020 . 2000383 DOI:10.1002/adfm.202000383http://doi.org/10.1002/adfm.202000383 .
0
浏览量
7
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构